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1. GLOSSARY OF SYMBOLS USED

P ij= correlation coefficient between variables X. and X.

Pr{} = probability of an event occurring

E=correlation matrix

X =n dimensional random variable ,,N(O,:)

X. i-th variable component of X

A. Prf{X . (-z,z)I

n
A =Pr { u (A.))

aF =Fixed upper bound for Pr{LA}

L =Upper bound for PrIIA} for a given zF

ZF Fixed edge length of cube for Ai Pr{XX(-ZF,zF)

ZO Edge length of cube for A. Pr{X .F'(-zz 0 )! determined so that
Pr{AI a F

T =Tree connecting n disjoint events

To Best bivariate tree connecting n disjoint events such that

n
*Pr(A.) Pr(A.)A. is minimized

1=1 a. ijCT 0  a.

B.. = {A,,jA.} where A. is linked to A. on T
1.3 1. 1 .3 0

T'=A tree linking B..j formed by linking B. .-B.1, iff ii' or j,

or j~i', or j=j'

=Standard univariate normal density

2p = Bivariate normal density of N (0) p l)

(r' r0) P1l 2
3PP 1 P2 3 =Trivariate normal density of N1 10, p1  i p3JP~t~2  P3  1J

-------



DERIVING AND APPLYING IMPROVED UPPER BOUNDS FOR

MULTIVARIATE NORMAL PROBABILITY OUTSIDE OF N-CUBES

II. Introduction

The probability areas outside n-dimensional multivariate normal

cubes have long been of interest to statisticians. If X is a random

vector with an n-dimensional multivariate normal distribution with
S

i the mean of X. and z. the standard deviation of x.,

i = l,...,n, then

(1) Pr X is not in the multidimensional rectangle

" -z F-Z71  < X1  < +z Fa -

i-z i < Xi <U +z Fai

Un-Fz g < X < U +zFa

~n F n n n Fn -

is the same as

(2) Pr Y is not the multidimensional cube

-ZF < Y < zF

-ZF < Y < ZF where Y. 1 .
i 1 0.

-zF < Y n ZF

i.e. Y is X wita each component standardized to N(O,1).



This probability is of interest in three cases:

A. Finding the probability, a 0  that a random observation X is

not in the region determined by (1) when ulu 2,..., un are known.

B. Simultaneous confidence interval construction producing confidence

intervals for u. from Xi of the form [X-z 0 i< i <  i + z 0 a I

and being at least (1-a F) confident that all confidence

intervals cover the true parameters. This is done when ulu 2,... ,u n

are unknown.

C. When simultaneously testing the hypothesis H1 : Ul = u,

H2 : U2 = 4 2 . .H :U = u against the alternative hypothesisnn

Ha :HI is false. .H na: Hn is false, and it is desired to obtain an

upper bound aF for the probability that at least one H. is rejected
I

when in fact all H. are true by using acceptance regions constructed1

the same way as in case B.

In case A, zF is usually fixed in advance and it is desired to

determine 0 the smallest upper bound for . In cases B and C, F

is usually fixed in advance and it is desired to determine the smallest

z0 which will give aF as an upper bound for the true a.

Current methods used to find a0 and z0 in the situations

described above are of three types (i) the Scheff6 method which incor- W

porates correlations of marginal distributions along the axis of the

cubes but builds the confidence intervals for all linear combinations of

the marginal axis variables, and this gives extremely conservative

(large) values, (ii) the Tukey range and Bonferroni inequality methods

which generally give less conservative results but do not incorporate

2
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correlations of marginal distributions along the axis of the cubes.

(iii) A method suggested by Hahn uses the (not necessarily correct)

assumption that if Pij > 0 for all i,j then

- .z" zDn (.)dx 1 .* dx n> f- .. I- (P)dx 1 * .dxn

where (a) Z is the covariance matrix of xl,...,x. I WLOG let the variance

of all x. be 1, the diagonal elements of Z are 1. (b) P = P1

where P is the minimum over i j of Pij I the absolute

correlation between x. and x.. (c) I (P) is an n dimensional1 3 n

multivariate normal distribution with var(Xi) = 1 for all i and

cov(x.x.) = P for all i,j. A problem with this method is that
1J3

often when n is large, P* is likely to be very close to zero giving

this method little advantage over a method assuming independence.

The method described in this report is an improved version of the

Bonferoni method which can incorporate correlations of the marginal

distributions to produce even less conservative estimates for z0  and

0 than does the standard Bonferroni method, or any of the other methods

mentioned above.

III. Description of the Improved Bonferroni Method

a. Three Pathway Overlap Reduction Theorem. Hunter (1976), Worsley

(1982). Represent events Al. ...An as vertices V1 ... V of a tree

whose vertices V. and V. are connected are joined by edges ei '3

then

(n < n
(3) Pr, U Ar. - Z Pr(A. Pr( A.

1 - i~ 1 i,j:e. .sT

3
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Proof: Since T is a tree, it is always possible to find a permu-

tation PI,..., Pn of 1,... ,n so that A is joined to A for

some j < i (i=2,...,n). We can then write

n

(4) UA =A u (A nA n A )'j "''u
i=l Pi Pi P 2  P 2  Pl

(A '\,A n (A .- u A ))

Pn Pn Pn-i Pi

The events in (4) are disjoint, so

n7

(5) Pr UA = Pr(A )+Pr(A A A +..+
i=l p2  p2  P

Pr(A 'n (A nn (A u ... uA ))Pn Pn Pn-iPl_

but Pr(A p-A q (A Pi ... uApi )) < Pr(A P A n A ) where 1 <j <i-1 hence

(5) < Pr(A ) - Pr(A nA ).
Pi i,j:e. iT P i  P.

Venn Diagram Explaining Theorem

A1  A 3  A4  A 5  A6

A A An A A n A A nA
1I2A 2 3 3 A4  A4 A5 A5 6

[Note (A1 and A 3) (A2 and A4 ), etc. are not necessarily disjoint

but are drawn that may be due to inability to represent 6 dimensional

intersections on a 2 dimensional diagram.]

4
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This is a tree since there is no loop, i.e.

A B
A +
D- C

6
So Pr( u Pr(A )+Pr(A )+Pr(A ir )Pr ,+Pr (A6 ) -r(A 1 t A2 ) -

Pr(A 2 ,n A) - Pr(A 3 n A4)-Pr(A4 -1 A 5 )-Pr(A4 n A6 ) .

A theorem will be presented in a future technical report of this

series written by the same author (Hoover 1986) which will enable us, in

n
some cases, to get a lower upper bound for P ( A.i) than did the previous

theorem from incorporation -f probabilities of pairwise intersections of

events. The improvement (when there is one) will often be very miniscule,

and in practice this theorem will be computationally much more difficult

to apply than is the three pathway overlap reduction theorem. A

IV. Application of Improved Bonferoni Method to Multivariate Normal

Distributions.

a. Bivariate Method - Incorporating Only Bivariate and Univariate

Normal Distributions.

If Y]n is an n-dimensional normalized random vector with mean

[0]n and covariance

I 1.>[ 1  P 12 ... ... Pln

P12

Lln

and z > 0. Then let the event .5
.

5%'
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(6.5) A =<does not include[1

and the event

(6.6) A. = (Y.- , Y +z) does not indlude [0].
1 1 i

LEMA (I) (Sidak, 1968) PrAIA A] =Pr (y-Zyi+)Idoes not

include [ J is a monotonically increasing function of p..j that

is,

ij kZ'l k

We should also note that

(7.5) Pr(A) = 1 t- (x)dx for all i = .. ,
-z

where s is the standard normal density and f~ Z-(x)dx can be computed

using the LM1SL subroutine M4DNOR:, also

(7.5?) Pr(A A P r A= Pr(. +r(A.) (

where Pr(A.) and Pr(A. are described in (7.5) above and Pr(A. -'A.

can be found using the bivariate normal distribution

(7.6) Pr(A. A. = 1 z - z *,(P(.x )dx dx

6



I

where (P) is the bivariate normal density N1 (),(p r)J. The

integral z ' : P)(x)dx can be computed using the IMSL sub-Z -Z

routine MDBNOR. The diagrams below explain formulas (7.5) and

(7.6) geometrically.

(o, z)

(o('

(z%) 2

!2 (0 -z) o,-Z)

Legend:

(o ,z)-

x (-z o)_ (z ,o) -

22-Z k = A

1. Construction of the Best Bivariate Tree

Given any set of multivariate normal variables with a given corre-

lation structure, then using Lemma (I) above and the following theorem

below it is possible to construct a "best bivariate tree" over which ,

it is possible to see a "maximal improvement" in upper bounds for all

values of z.

7
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h

Theorem. A best bivariate tree T can be constructed such that if
0i

N = a vector of the order statistics of IP i over the i and jT 0  ij

linked on T then for all k = (1,..., n) and all other trees T

ft will be true that N (k) > N,(k). This best bivariate tree T
T T 0

is constructed by the following procedure:

(8) Perform the following (n-I) times. Link together any two

variables x. and x j such that IP ijI is a maximum among

all links which have not been established in a previous step

and whose establishment will not form a loop with the other

links.

Proof.

FIRST. Given n points,at most (n-l) links can be made between

them without forming a circuit, and it is possible to have (n-I) p

links in a tree no matter how the tree started.

Proof. Induction

(i) Let n = 2. Obviously only one link is possible.

(ii) Now if a tree has been established for m items and another

item is added. This item can be added anywhere in the tree

either by directly connecting to another element of the

tree thus adding one link, or by connecting the new ele-

ment to P elements on the tree and breaking exactlv one link

in each of the (P-i) segments which connect those P

elements.

A -D A C A- A1-)I

I add x X or or
B C B D B - ( X -- B -- C

8
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The (P-i) segments exist since the P elements are connected

but it is not P or more segments since there are no circuits.

Thus the net number of new links added to the tree by bringing

in the new point is P-(P-I) = 1.

SECOND

Now that at most and exactly (n-l) links are possible in every

tree it remains to be established that N (k) > N-(k) for all k.
T 0 T

This proof will be inductive. For i = 1 it is obvious that

NT (1) > N%(l). Now assume that for i = 1,2,...,k-1 it has been
To T

shown that N T(i) > Ni (i). Then assume that for k there is a tree

0
such that N^(k) > N(k). Let J-O be the connection in "

T NT
0

which generates N,(k). Then if we consider the first, second,...,
T

(k-l)th links established by the algorithm of this theorem in

forming T we must have exactly one string connecting J and 0,
l0

. L - M .... 0. Otherwise on the kth step the connection

J-O is possible and will be made before a connection generating a

lower absolute correlation coefficient is made. k-l links have been

established by the order statistics. N and k-i different links

(some of which may be the same) have been established by the order

statistics N-, The (k-1) links established by the order statis-
T

tics N must prevent the establishment (excluding redundancy) of

any of the k-i links established by the order statistics N.. For
T

if there exists a link n- corresponding to the Pth order statistic

of N,: P < k-i, then P >!P I > kth order statistic of
T - xX,

To and hence the algorithm on the previous page will establish the

9
S,.
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link n-7 on the kth step before establishing a link with a lower

absolute correlation.

LEM-A. (II): (k-l) links which do not form a circuit prevent the

establishment of any of a set of k-l different links (excluding

redundancy) which themselves collectively do not form a circuit iff

each set of the k-l links is a collection of maximal spanning trees

where each maximal spanning tree in one set connects exactly the

same points as one of the maximal spanning trees in the other set.

Proof of Lemma.

= WLOG assume each set contains only one maximal spanning tree

and that the maximal spanning tree in each set connects exactly the

same k points. Then to add any of the links in L2 which are not

in L to the structure formed by the links of L will create a

structure with k links between k points and hence must contain a

circuit. If there are more than one maximal spanning trees in LI

and L each maximal spanning tree in LI connecting the same points

as a maximal spanning tree in L2. The proof can be extended by

considering all the maximal spanning trees of L and adding in the

maxima. spanning trees of L2 one at a time.

If each tree in the set of maximal spanning trees formed

by LI does not connect exactly to the same points as a corresponding

tree in the set of maximal spanning trees formed by L2, then find a

connection in L2 which connects two points which are not both in the

V'same maximal tree, formed by LI. Then adding this connection to L

will either (i) connect two separate trees together which doesn't form

10
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a circuit or (ii) connect an unlinked point to a tree which doesn't

form a circuit or (iii) connect two unlinked points together which

does not form a tree. QED.

But this lemma creates a contradiction with the situation we

observe since J cannot be connected to 0 due to the first k-l links

of T and each maximal spanning trees formed by the first (k-l)

links of T0 will contain exactly the same points as a maximal

spanning tree formed by the first (k-l) links of T. Thus if it

were possible to connect J and 0 together on the kth link of NT̂

then it would also be possible to connect J and 0 together on the

kth link of T which would have been done by the algorithm forming

T since N^(k) > N T(k).
0T T

Implementation of the Procedure Building T on Computer

This can be done by a program which picks the maximum correlation

coefficient that has not been used for a link and adds that link to

the graph if doing so does not create a loop, i.e. start with F=O and

0) Do while F < n.
1) Pick largest remaining !P i#j.

2) Link i to i if i and j are not in the same tree. Other-

wise set IPi = 0.
iJ

3) Note which tree i (or j) has been added to if a variable

has been added to a tree. Otherwise if two trees have been

merged note that the trees are now the same.

4) F = F+l go to step 0.

This operation involves 0(n) 3steps and for 20 or less variables this

should not be too complicated.

11
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2. Obtaining the Improved Bonferroni Upper Bounds for Areas.

Outside Multivariate Cubes Using Formulas (3) and (8).

Let [X) n N(O,Z), where (Z) is a correlation matrix and let

T be the best tree obtaind for X using formula (8). If we

let A be as defined in (6.5) and A i  as defined in (6.6) for some

fixed zf > 0, then

n
Pr(A) < Pr(Ai) -i Pr(A i n Aj)

i=l ijeT 0

nPr(Al) - Y Pr(A. n A.)
ijeT0

(9) by (7.5), (7.6) =nl 1 jf 4(x)dx - t (x)dx1
- -zf - ijcT0 _ -Zf

+ - f (x) dx -[ - - Z f t 2
1j(x V x )dx dx 7

J Zf -' f '-zf

Jf 2]( x4 xdx
(2-n) W(x)dx + F f [1 +Pi ,xo) dx

zf ijET 0  1 _ -zf -

If a is fixed in advance, say a = F and one wishes to determine

z0 such that

Pr(Alz 0) < aF

This can be done iteratively and quite inexpensively by using the Newton-

Raphson formula. Start with (zo) an educated guess for z0 . Then let

12



(9.5) = - ___0__

where f(z 0) is [(9)-c±F] and

f,(zz

(*) K (2-n) 1i W f~ dx] +r-f F ( x x)dx dxj
z 0 L I fZ - ijET 0  J-Z i -z J2

but

[ c(x)d]= 20(z)

and

d F (Z P..

dZz 0 LJ-Z j - 2 ] 0 -4(z0 itjP z0)d

Therefore

(10) ()=(2n-4)0(2~ -4I ~~~ (X-P. z )

very (Z~ esimt coere qut .o ':1 0 d

better estimate for z 0.It turns out in practice that the Newton-Raphson

method ()esiaecnegsq terapidly to z0 and is computationally ...

vey inexpensive. Note that f is monotonic so the solution is unique.

b. Trivariate Method - Incorporating Trivariate and Bivariate Normal

Distributions. h

If one is able to integrate over trivariate normal cubes (which can

13



be done by the LMSL subroutine DMLIN, but is very expensive and time

consuming] then one can use the method below to obtain closer upper

bounds for z0  of Statements B, C on page 1 and a of Statement A

on page 1 than are obtained by the Bivariate Method.

Let T be the best bivariate tree as constructed in (8). Then

for all links ijeT 0 define the event Bij = (Ai uA.). There will be

(n-l) events Bij, since there are (n-l) links on the tree. These

events can then be linked together in a new tree T' where

(13) B. can be linked to B°,j, only if i=i' or i=j' or j=i' or j=j'

For example given events A. linked by T as below

B12- A 1B46

824

Then B 12-B 23-B 24-B 45-B46 is a tree, so is B 23-B 12-B 24-B 46-B45

Except in the case where A -A- ..... An is a string, there will

not be a unique tree linking the Bij s together such that condition

(13) is met.

Assuming that we have a tree of events B.. formed as in the
1J

method above with B.. = (A uA.) where X ' N(0 ) and Var(X i) = i

for all i with A i = I > z}. Then

(14) Pr(Bi.) = Pr(Ai uA.)
1j J

14

V"
Vf



given in formula (7.6) and Pr(Bij n Bik) = Pr(B ij)+Pr<B jk )-Pr(Bij jk )

where Pr(B i) and Pr(B.) are as defined in (14) and
ij j

Pr(Bij j Bk) = Pr(A i u A. u Ak),

(15)

1 - Z 3Pij'PjkPkdxldx dx3

where 3 [P ij,Pik'Pjk] is a 3-dimensional normal distribution with S

I P. P

Z= ij 1 P jk
T~ik Pjk 1 -

3 [PijP ikPjk] can be claculated with IMSL subroutine DMLIN if

is of full rank. Otherwise there is a procedure developed by

Uusipaika which can be used.

After incorporating (14) and (15) into (3), it follows that

Pr(uA i) PrI j, Bi. < / Pr(B..) - Pr(B.. B.,.,)
eij0 0 ij,i'j'T j

0= L - )-d ld

(P( )dxdxx

T 0-Z -Z1

z z

ij ,i 'j vr- T0  - z

+ 1 - f- P2 (Pij,)dx1dx2 1f f { izdxdx

- - -z z -z [ Pij Pj, ]dX 2 dx

[Assuming WLOG that j=i']

15
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which given the unknown nature of T' is the simplest form this can
0

be put in.

Theorem. The trivariate method gives superior results than does the

bivariate method, i.e. (16) when applied to a maximal T ; gives a lower

upper bou i for PrfIA] than does (9) applied to T 0 *

Proof:

(17) Pr(B.. i Pr(A.i uA)= Pr(A .)+Pr(A .)-Pr(A inA)
1; i'jET 0  1 i,jET 0

n
- Pr(A)( edges connected to A. d Pr(A iflA)

(18) P(B. .fw.,., assume ji'
11)P(~j~~, = I Pr(B..nBjj,)

0 0

7 r(A .)+Pr( (A .uA .,) A. )

n
= Pr(A.)I of edges connected to A)-

+ Pr(A nA.,) nA

i,j,i'sT 0  1

so subtracting (17) from (18) shows that the upper bound for Pr(UA d

given by (16) applied to T' is
0

16



([Pr(A ). # edges connected to A.] - Y Pr(A nA )]
ijcT0

- [ZPr(Ai)[# edges connected to A. on T -l]+ Pr(AinAj,) nA c]11jj'cT 
J~

= EPr(A i) - 0Pr(A.nA ') - i Pr((A inA ) n A.)
1 ijcT 3.~ ijjv'T' 1 3

0 0

< Pr (A ) - Y Pr(A nA
-- i cT0  (Ai 0

= the upper bound for Pr(uA.) given by (0) applied to T O .

There are some problems with using (16) on T' to find an upper
0

bound for Pr[uAi]:

1) It may not be practical except when Ai ', '',A form a string to

find a best tree T;. Also the B.. and T; formed above do not

necessarily give the lowest upper bounds possible for Pr(uA.) when

using trees with bivariate and trivariate normal distributions.

2) It is computationally very expensive and time consuming to calculate

the triple interval ! z f 1 P )dx ( iu-Z -z -z i Pjk' ik d1 sing the LMSL

procedure DMLIN. It may be possible, however, that superior algorithms

exist for integrating trivariate normal distributions.

3) When the covariance matrix E is not full rank there is no computer

algorithm which can calculate the above integral (although Uusipaika's

method will work if developed into a computerized procedure).

4) Due to the expensiveness of calculating the trivariate normal

intervals it would be impractical to use the Newton-Raphson procedure

with this method to find z for a given aF. Perhaps some other type

of numerical estimation could be used, see chapter V part b.

17.p p



V. Evaluating the Improvements in Upper Bounds for a0 and Upper

Estimates for z0 Given by Using These Methods.

It is envisioned that these methods could be applied for simul-

taneous inference on as many as twenty parameters for which we have

jointly normal estimates. It has been shown that these methods give

closer upper bounds than does the standard Bonferroni method. The

standard Bonferroni method is not, however, the best method available

for calculating upper bounds for multivariate normal probabilities

of lying in cubes centered at the origin. Sidak proved that

0
if x is an nx n vector distributed N((%), z), where is any

n x n covariance matrix with diagonal elements of 1 then

n n
Pr[ U x.i(-z,z)] < Pr[ U yi (-z,z)]

i=l 1=1

where y is an (nxn) vector distributed N(( 0), I). Therefore, by

assuming the components of any vector are independent and calculating

the probability that the vector lies outside of the n cube centered

at the origin, one getsanupper bound for the true probability that

the vector lies outside the cube. This upper bound is smaller than

the standard Bonferroni upper bound since if we let

n
A. = Pr{xi (-z,z)}; A = u {A

i-i

n
C. = Pr{y.i (-z,Z)}; C = U {Ci }

i=l

Then for all i: Pr(A i) = Pr(C i) and Pr{C} is the Sidak upper bound

for Pr(A) while ZPr(A i) is the Bonferroni upper bound for Pr{A} and:

18
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Pr(A)SiaPr{C} -- 2Pr(Ci) = 2Pr(A.)
Sidak Bonferroni 

-1

This conservative independence upper bound is easily calculated since

nPr{C} = l-(l-Pr{Ci}) . The question remains as to when the methods proposed

in this report give lower upper bounds than does the conservative

assumption of independence.

The answer to this question will be looked at in two different ways.

The first will be theoretically to see if we can determine the usefulness

of the methods as relates to the IPij i,j To, the values of zF and F

and n the number of variables. The second way involves empirical

observations of improvement for particular values of n, F' ZF and P ij

where Pij = Pi'ijeTo"

a. Theoretical Investigation of the Amount of Improvement in Lowering

a and z0 Using Improved Bonferroni Methods.

Theorem 1. For any tree T and any collection {P ij } of P ij,ijTo

then given the same tree T0  and the same {Pi. i except replacing

with P' where P < 1P. 1, the upper bound for

PrIuAi] given using the bivariate and possibly the trivariate method on

the new set of {P.. is lower than the upper bound for Pr[uA]

given using the respective method on the original set of {Pi }.

iJe

Proof:

(a) Bivariate: By (Sidak) (1- fZ zz 2 (Pi o )dxldx2 ) > (I - fZzfz 2 (P! o )dX2dx2 )

iff IP o I < 1P JoI. Thus the upper bound given by (9) will be

lower for the new set of fPij}.

19



(b) Trivariate [may not always be true, needs to be nroven]. Also

need to consider P..; where Ai--A.-Aj oa the tree.

Theorem 2. For 1P ij I P where PO < I, ijeT O. Then if we let

A) a 0 (I) be the a calculated for a fixed zF under assumption of

independence.

c0 (B) be the a calculated for a fixed z F using the bivariate method.

a0(Tr) be the a calculated for a fixed zF using the trivariate method.

Then let n - =. There exists a N such that for all n > N
00

LF( I ) < aF(B) and aF (I ) < OF(Tr).

Also, if we let

B) z0 (1) be the z calculated for a fixed aF under assumption of

independence.

z0 (B) be the z calculated for a fixed a F using the bivariate

method.

z0 (Tr) be the z calculated for a fixed a F using the trivariate

method.

Then let n = variables - . There exists a N such for all

n > N 0 < ZF(I ) < ZF(Tr ) .

Proof of A).

For fixed z F the proof is easy since it can be shown that for

large enough n, the upper bound given by the trivariate method is

greater than 1. This implies, since the bivariate method is never

superior to the trivariate method, that the bivariate upper bound is

also greater than 1.

20
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Formula (19) gives the trivariate upper bound as

ZPr(A i) - P(A ) ) Pr(A i n Ak n A ' )

, jer 0  ijjk on TO

so adding a new element An to the tree adds the terms

Pr(A) - Pr(A 2Am) - Pr(A Ak Ac)
nn Mn k

= Pr(A)n -Pr(A n  (Ak  Am ) )]

=Pr[ (A n (A~k A,] c

and if !Pn !<Pkm'- <1 then P Pkm, P ranges over aInk km n 0 nk' km n

compact set hence Pr[A nn(A k uA m )c I which is a function of Pnk' Pkn'

P and is bounded by zero must achieve its minimum value at some _5

point in this set. But for every point in this set Pr(A '(.AkjAm)c) >0

nA
since xn xk or x = x is impossible. Therefore Pr[A n

(A uA) > > 0. Thus adding each new element to the tree adds

at least E to the trivariate uppe bound. So if we add Q > i

elements to the tree we will derive the trivariate upper bound above

l and 1 > (independence upper bound).

Proof of B)

This is very complicated and will not be done. " l

QED.

Two Part Theorem Regarding the Relationship Between the Improved Bonferroni ,

n
Lower Bounds for Areas on Normal (z) Cubes Centerd at the Origin and the S

Value of z.

-~
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Part I) As z 4 0 for a given n > 3 and ncnsingular correlation sub-

matrix ()' of size q> 3, and x N )') there exists a

q , hrJ nje

zL (depending on n and E) such that z < zL implies that the

upper bounds given for Pr[Xie(-z,z) any i] are greater than 1 for
1

both the bivariate and the trivariate methods.

Proof:

It has beer. shown already that the bivariate upper bound can be

no lower than the trivariate upper bound so it suffices to prove the

statement for the trivariate upper bound only.

Let H and K be two events such that H is not linked to K

on TO; a link B h-Bjk does not exist on T' for any j; and there

exist variables XnX 0  such that [Xj,Xk,Xn,XO] has a nonsingular

distribution. Then the trivariate upper bound for the Pr[X i(-z,z) any i]

will equal

n
Pr{ U X i(-z,z)i=l,.. ,n}

i=l

+ Prihk ( (X(-z'z)),)X h(-z' z) Xk(-z z)
iih,k1

+ Probabilities of other, disjoint terms

> [Pr{ nl (X~c
iPr k X(-rz,z))Xh(-z,z) rx k (-z z)} ] +

n

[i -Pr{ 1 X (zz )

i=l

S1+ [Pr{ n (x F(-.Zz)) n X (z z),k (-~ )

n
- Pr{ Xic(-z,z)}]

i=l1
22



But as z ; 0 the ratio

n

ih, k i=l
n

Pri r) X X F-((-ZZ, Z

PrI C** XE(-z,z)'7
i~h~k density on the hk plane passing through origin
n density on originPer X X.E(-Z ,Z)}
i=l 1

= due to nonsingularity of distribution of (XpXO,Xh,Xk).

Therefore there exists a value of zL such that z < zL -

PrP C X.E(-z,z)}

i~h,k i2
n

% Pr{ r, X(-z,z) }

n
l+Pr{ P' (X. (-z,z))lXh) C(-z,z)nXk.(-z,z).,-Pr, OX e(-zz)} >1

ihk 1i=l

-- trivariate upper bound for Pr{z. (-z,z) any i} >

QED.

Part II) As z + -. For a given n and nondegenerate (i.e., no two

events are the same) correlation matrix Z and X '\, N(O),[7] ) there
0 -n

exists an z depending cn n and Z such that z > z implies that

if

23
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O is the upper bound estimate of the probability (X) is not in

the cube centered at zero with edge length z using independence.

is the upper bound estimate of the probability (X) 
is not in

the cube centered at zero with edge length z using either the

bivariate or the trivariate method.

Then

Ql- < (1i+)
Q2

Proof. [For bivariate method].

1) First we will show that for a given tree of size n

fl Pr(A. -- A.)

lim z t Sup I I < l for all E > 0ij PAI)

L

where

A. = Pr.Xi (-z z)}

A. = Pr{X. (-z'z)}.J J

One way to do this is to note that if

xJ

NI '0' (n.. Reebr jJ 1 since

X P Z is nondegenerate. .0

WLOG assume P.. > 0.

Then one can say X. = P..X. + Y/1-P. (y) where v is N(0,1)
J 1J 1 1J

and independent of X.. Now for all c > 0 and o > 0 ,z such
1b

that for any z > zb

24
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(*) ~~Prf IXJ ~i~
i I >Z+Cr i > n

So for any z > z b

Pr{ , X > Z JX I>Z

< Pr{ !X, I>z+c IIX, I>z) + Prf!Xj E[zz-+o]I Ix.i > z}

<Pr;!X. > z+OIX.I >zl+PriX i i-Z,Z+Y :x I > zI

8n Z

1-PP..

+Pr y < - P Y >-1_- z-

'~1-P.. -1- IjIj

but z~ such that z >z '
-C

( -(1+P ..)
(*)Pr y -1- Z I> < 8n

nij

and

r -n.. CI .

1-P.2. 
1-P

2  8

nij 3i'

So if z > max(z b z C) then () (*)and(*)

25
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~'Pr{ IX > Z 3E E
j i-8n -2n

Pr{IxI > ZO!IXiI >} 2n Pr jXI>Z

II) So WLOG let P13. sup P k for all kZET 0and z be larger than

max(z b~z). Then

Pr('IX,l > zCIX, I > z} p- Pr( !X

n2

2. P~kf > z} ' P{kI >zflixz>
kl k,z-T 0

TO

Now0

n
KPrl:X k' > z J > Q I Pr k=1 > Z}

E 2 {Pr'XKZI

_l T0 <Li k (1+c) for <1.

The proof for the trivariate method follows from the proof of the

bivariate method, since:

(I) We saw in the bivariate method

F Pr(A nA.)
- Pr(A.) -- < for all e < 0
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which implies that

Pr(A fA A)ilia I sup Pr(Aj) E 
-  n for all c > 0 .

[i##j' Pr(A -

(II) So the trivariate upper bound (Q2) given by (19) is

*)ZPr(A ) - Pr(A nA ) 7. Pr((A inAj )nA )

ijc T0  ijj '-T i

but from the proof of the bivariate method and the fact that

Pr((A. ~A)Ac) < Pr(Ai-A') it follows that for z large enough

(* > nPr(a )-(n-1) -Ln Pr(ai)-(n-2) --n Pr(A)
= 2n (i (2n

nPR(A - (2n-3)E Pr(Ai) < (n-c)Pr(Ai)
1 2n 1

- (1--) Pr I YkI>z}

(III) Now

n
{PriXk!> z} > Pr ( u IXkf>z)

T0  independence k=l

Q1  T JPrj~k I > z} ___frn2

Q2 <  Q2 < j < (1+c) for n > 2 .

Conclusion.

The previous theorems of this and other sections give us

(a) The trivariate method always giveq lower upper bounds than does

the bivariate method.
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(b) Everything else remaining the same (i.e. n, T0 ,) replacing a

p(l) on the tree with a [P ] such that jp() 1 < •(2)
O0 O0o 110 %Oo0

will always produce a lower upper bound using the bivariate

method and will probably also produce a lower upper bound using

the trivariate method.

(c) For fixed n, nonsignular Z, T0 and T' making z0  close to

zero causes the bivariate and trivariate methods to produce higher

upper bounds in relation to those produced by the assumption of

independence.

(d) For fixed n, nonsingular Z, T and T' making z0 very large

causes the bivariate and trivariate methods to produce upper bounds

which get infinitely closer to those produced by the conservative

assumption of independence.

(e) For bounded Pij I V i,j; increasing n eventually causes the

bivariate and trivariate methods to produce poorer upper bounds

with respect to those produced by the conservative assumption of

independence.

Thus we can see there is a complex relation involving n, (zF or DF
) ,

and the P.. 1 < ij < n which governs the effectiveness of using1J

the trivariate/bivariate methods over the assumption of independence.

In the next section we try to develop an actual picture of this

effectiveness using sample calculations of upper bounds for a. given

ZF and z0 given aF for selected values of n, and Piji,jcT0*
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b. Actual Upper Bounds Obtained for zo!aF and a01ZF From Using

the Trivariate and Bivariate Methods.

1. Table 1 contains upper and exact bounds for a01ZF obtained by

using several methods involving several assumptions on ZF, n, and Z:

(i) zF was taken to be 1.96, 2.25, 2.5 and

felt that these values of z were representative of what would be of

interest in practice.

(ii) n was taken to be 4,5,6,...20 because it was felt that in

practice, simultaneous i;ference on 4 to 20 variables would be desired.

(iii) The methods used were

A. Column 3: Conservative assumption of independence [Corollary 3,

Sidak, 19711 which says for X , N(O,E)
nn

Prt U Xi (-z F z I i )} < 1 - H Pr{XiE(-ZF aiZFi

B. Column 4: Bivariate method assuming the IPx.x. I all have the

3-J3

same value P for e..T. The value P was allowed

to be .1,.2,......9,.99. Calculations were done by a

computer program using formula (9) and the LMSL

procedures MDNOR and MDBNOR to calculate bivariate and

univariate normal cube probabilities respectively

C. Column 5: Trivariate method making the same assumptions as in B

but also assuming P = (P) for e T'. Calcula-
x i i ,ijjj "

tions were done by computer programs using formula (16)

and the L'4SL procedures MDBNOR and DMLIN to calculate

trivariate and bivariate cube probabilities respectively. S

29



D. Column 6: The exact value for the equicorrelation case where

P -P for all k,Z. The formula taken from Hahn and

Henderson is:

ZF+, Y -ZF+Ip* Y

n -n
Pr{ U A.} = 1- c 1 ,(x)dx - p (x)d)d

i=l 1 [ ....

Again P was allowed to be .1,.2 ...... 9,.99

E. Column 7: Trivariate method making the same assumptions as in

B, but also assuming P = (P)2 for e.j,jj,T'
xij ,

This is an AR(l) time series process. Calculations

were done as in Column 5.

Examination of this table will give some ideas as to the improve-

ment of the upper bound for cOtzF which are obtained through the

bivariate and trivariate methods. The two points of interest are:

1. How much lower, if any, are the upper bounds for a0 obtained from

the bivariate and trivariate estimates than are those obtained from the

conservative assumption of independence.

2. How close are the bivariate and trivariate upper bound

estimates to the actual values. p

Column 6 in Table 1 gives actual values of a 0 for the case k

where there is equicorrelation among all the variables, i.e. ,.".

1

P 1

P P i1

S 0

P ..... . P IP
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Column 3 gives the independence upper bound for the a0  in column 6

while column 4 is the bivariate upper bound for the a 0 in column 6.

Column 5 is the trivariate upper bound for the a0 in column 6.

The pattern observed in these tables is far too complex to be

described in the limited space of this section. But some general

observations should be made.

a. For correlations of less than .3, the bivariate and trivariate

methods do not improve much or at all over the conservative assumption

of independence for all values of n and zF examined.

b. For Pij > .6, zF > 2.25 and all n, the bivariate upper boundsF-L

for a0 are much smaller than are the independence upper bounds. Example

ZF = 2.75, Pij = .8, n = 18 the independence upper bound for a iszii

.10201, while the bivariate upper bound for a0 is .07575.

c. For all Pij' ZF 1 2.25 and all n the trivariate upper bound

for the AR(l) process is not substantially smaller than is the bivariate

upper bound. Example zF = 2.25, Pi. = .4, P ij, = .16 and n = 6. The

bivariate upper bound for a is .13502 and the trivariate upper bound

for -0 is .13254.

d. For P > .4 and all zF and n, the trivariate upper bound

for a 0 in the equicorrelated case is significantly lower than is the

bivariate upper bound for aO, yet is much larger than the actual value

of a especially if P.. is large. Example 1: P.. = .5, n = 8, zF = 2.5.
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The bivariate upper bound is .08998, the trivariate upper bound is .08400

and the actual value is .07456. Example 2: Pij = .7, n= 13, zF = 2.25.

The bivariate upper bound for a0 is .23582, the trivariate upper bound

is .19754 and the actual value is .13471.

For the high correlations, i.e. Pij > .7 the trivariate and the

bivariate methods give better upper bounds for a 0 for n even as

large as 20 than does the conservative assumption of independence. In

the case where the correlations between variables become multiplicatively

smaller the farther away one moved along the tree (i.e. AR(l)) the reductions

in the upper bounds from using the trivariate method were not much greater

than were those from using the bivariate method. If the correlations

of variables far apart from each other on the tree are high with respect

to the correlations between adjacent variables on the tree (equi-correlated

case) then even the trivariate upper bounds for a0 were much higher

than the true values of 0"

2. Tables 2A, 2B and 2C contain upper bounds for z0DF obtained by

using the bivariate method along with sevaral assumptions on aF' n and -.

(i) was taken to be .05, .10, and .20 because it was felt

that in practice jointly simultaneous confidence intervals of 80%,

90% and 95% probability would be desired.

(ii) n was taken to be 4,5,6,...,20 because it was felt in practice

that simultaneous inference on 4 to 20 variables would be desired.

(iii) () was chosen so that 1P X i eT always equaled someP~. 3 ij

constant P. P was set at .1,.2 ...... 9,.95 and .99.
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Zo aF was calculated by choosing an initial o and then 6

calculating a. by formula (9) using the IMSL procedures MDNOR and
z0

MBDNOR. A new Z was calculated by (9.5). This was repeated until

la^ -aFI < .0001 at which point z was set to zo"
No attempt was made in this table to find trivariate upper bounds for

z Fa Due to the present computational difficulty of working with tri-
variate intervals, it would be difficult to use the Newton-Raphson procedure

to do this as could be done for bivariate upper bounds. Some type of

interpolation method would probably be the best way to obtain these

bounds. One crude method would be by finding zB  (the bivariate

upper bound for z0. Remember z B > zT . Calculate (under the trivariate

method) a B zB. It follows that aB < aO . Find z such that the

single interval probability that Xi (-z uZ) is a0 . Then calculate

a uz for all of the intervals together using the trivariate method. Itu u

will follow that au > a . Finally let

au-a a - u
(19) u z + OB z

F ot aB B a-aB u
B

The zF we obtain will be smaller than that obtained by the bivariate

method. It also should be larger than the true trivariate upper bound

zF since it makes sense to believe that z is a convex function, i.e.

33
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0

zF B
z

As was the case in Table 1; the patterns shown in Tables 2A, 2B

and 2C are too complex to describe completely. Some important things

can and should be noted from these tables, however. First for

tF = .05, .10 and .20; the bivariate method generally gives lower

values of z0  for all n than does the conservative assumption of

independence. Although the reduction in values may seem small they

are actually larger when one considers the reduction in the hyper-

volume of the cube as opposed to the reduction in the edge length of

the cube.

Example 1: aF = .20, n =6, P..= 4

The conservative assumption of independence gives an upper bound for

z0 of 2.111 while the bivariate method gives an upper bound for z0

of 2.087. This representates a reduction of edge length to .9886 of

its original length. But it also represents a reduction in the hyper

volume of the cube to (.9886)**6 = .9337 of its original value.
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Example 2: a = .20, n=10, P.. = .7

The conservative assumption of independence gives an upper bound for

z0  of 2.309 while the bivariate method gives an upper bound for z0

of 2.213. This represents a reduction in edge length to (.9584) of

its original length. But it represents a reduction in the hyper volume

of the cube to (.9584)* . 1 0 
= .6540 of its original volume.

Example 3: aF = .05, n = 15, Pij = .9 . S

The conservative assumption of independence gives an upper bound for

z0 of 2.932 while the bivariate method gives an upper bound for z0

of 2.742. This represents a reduction of edge length to (.9352) of

its original length and a reduction in hyper volume of the cube 
to '.'

(.9352)**15 = (.3660) of its original volume

Example 4: aF = .10, n = 20, Pi. = .99

The conservative assumption of independence gives an upper bound for

z0 or 2.799 while the bivariate method gives an upper bound for z0

of 2.216 which is .7917 of its original length and a reduction in hyper %

*-20 %cube column to (.7917) = .00936 of its original volume. %

Table 3 compares trivariate and bivariate upper bounds for

z = .10 for n = 5,10 and 20 and P.. = .6,.7,.8 and .9. The
0 10F = 1

bivariate upper bounds are from Table 2B. The trivariate upper bounds

are calculated as in (19) using both the case .,ere P = (Pij)

e i ,eT' and the case where P (P ) 2 ,jjcET'. The tri-=jj eij~ jT.Teti

variate method does give significant reductions below the bivariate

method in the case where P.., P... S
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Example 1: a F  10, n = 5, P.j 7, Pjj, .7.

The trivariate upper bound for z is 2.17 while the bivariate upper

bound for z0  is 2.23. This gives an edge length ratio reduction of

**5
.973 and a hypercube volume reduction of (.973) .872.

Example 2: aF = .I0, n = 20, Pij .9, * P., .9.

The bivariate upper bound for z0  is 2.59 while the trivariate upper

bound for z0  is 2.49. This gives an edge length ratio of

**20
.961 and a hyper volume reduction of (.961) = .455.

In the case where Pij, = (Pij)2 the reductions given by the

trivariate method are not as impressive.

Example 3: ax = .10, n = 10, Pi. = 8, P , .64.
F " j

The bivariate upper bound for z0  is 2.44 while the trivariate upper

bound for z0  is 2.42. This gives an edge length ratio of

.992 and a hyper volume reduction of (.992)* 921.

C. Summary

In part a. of this section it was shown that the bivariate/

trivariate methods gave better upper bounds with respect to those

given by the conservative assumption of independence as absolute values of

correlations increased, number of X. decreased and z became neitheri

too large nor too close to zeio. In part b it was shown that for large

absolute correlations between X. ., e. .cT the bivariate method gave
iJ iJ

considerably lower upper bounds for a 0zF and z oa F  than did

independence. It was also shown that if P.., was large for e ... ,Tiil lJ ,JJ

that the trivariate method gave considerably lower upper bounds for
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CLO!ZF and ZoI OF than did the bivariate method. If Pij, was

small compared to Pij' i.e. Pij, = (Pij) 2 then the upper

bounds for alOzF and ZFlaO given by the trivariate method, were

not much smaller than those given by the bivariate method. It

is felt that the improvements in the upper bounds were enough to

warrant usage of these methods in practice.
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VI. Areas of Application.

Many areas of application of these techniques come to mind. Among them

a. Multiple Regression. Using the general linear model

Y = XB+E,c iid N(O,a 2 )

a2 known, B an unknown (nxl) vector

B = (X'X) -'Y

Cov(B) = (X 2X) a

corr B = W'(X'X)-w where W is an (nxl) vector such that

-lI -1/2
W. = ([(X'x)-Iii)-/

It is desired to obtain confidence intervals for B. where
1

i =1 ,..,n. The current method used to find the largest z0  such

that

Prn 1 ~ 1 (')~~B.-- 0 XX
(21) Pir (U B - XX) B+z iiax) I <CL

is the standard Bonferroni method which involves finding z0  such that

Pr[B i (B i-z 0(X'X) ii, Bi +z (X'X). .)] I= F/n. Smaller values of

z which will have property (21) can be obtained bv using (8) to

form the "Best Bivariate Tree: T 0 then iteratively using the Newton-

Raphson procedure (9.5) with f(z) = (9)- F and f'(z i) = (10).

Even smaller values for z0 could be obtained by applying (16) in

some fashion to the tree T' created from T by (13).0 0

It is important to note that often a is not known and is

(y 2
( -Y)

estimated by T - (n-i) which then means that confidence intervals

for B. are created using a instead of a. All of the methods
1
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described previously could then be easily modified to use multivariate

t distributions instead of multivariate normal disLributiors.

b. Time Series.

These simultaneous inference procedures can be applied to estima-

tions of probabilities of events involving autoregressive, moving

average and other types of time series models. For instance let's

look at the MA(3) case where

Yi = g1 (X i )+g2(Xi-1)+3(X-2) where i = time; glg2,g3

are known constants, and the X. are iid N(O,a 2),o2

1

known.

The goal is to produce simultaneous at least (1-aF) confidence

intervals for the values of [Yi,Yi+l .. , Y i+n1 given no prior

knowledge of X1, ... ,Xi or Y1 ... ,YiI. Without loss of generality
22 2 2

let 2 1 and [g22+g2+g = 1. Then

i . Pl P2 0. . 0

Pl . " ' .1 = [glg2+g2g3]

P2 "."• P2 where ,0_Pi2 I glg3 ]

......... O'p 2 p" 1

n
Using the notation A : [iu X. J (-z,z)] and [A. =X. i (-z,z)I then

the best bivariate tree T is [A .- A i. The standard
0 i i+l i+q

Bonferroni z 0  is the largest z such that Pr(Xi (-z 0 ,z 0 ) < n"

Smaller values for z0  could be computed iteratively by using the Newton-
00

Raphson procedure (9.5) on T0 with f = (9)-a F and f' = (10). Still

smaller values for z0 could be computer by applying (16) in some fashion

to the tree T' created from TO by (13).
0 0
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c. Linear Combinations of Variables.

Let [XI,X 2 ,...,X n ] be jid N(0,1). Let al,a 2 ,...,a be (nxl)

vectors and suppose one wishes to determine (1-a) simultaneous confi-

dence intervals for [a1X,a 2X,... ,amX] . If n < 4 and al,...,a m

are contrasts or if n < 3 then Uusipaika has developed a way to

determine z0 such that

n nf
Pr U a.Xe (-Z aij ' a.)> =

i=l 0 l j=l

For other cases, Tukey's method on the standard Bonferroni are used

to find confidence intervals for these linear combinations of para-

meters which are at least (1-aF ) simultaneously confident. Letting
2 2

A. = aiX (-z Zai 2zZa 2.); (8) can be used to obtain the best bivariate
1 1 j J j

tree: T and the Newton-Raphson procedure (9.5) with f(z)=( 9)-,F

and f'(z) =(10) can be used to find a z0 such that

( n (m maj) 1
Pr aiX ('-z ao z a > (1-a

j=l

Even smaller values for z0 could be obtained by applying (16) in some

fashion to the tree T' created from T0  by (13). In this case we
0 0

might need Uusipaika's formula to integrate over singular three-dimensional

distributions since we are dealing with linear combinations which could

mean singularity in the covariance matrices of three adjacent points

along TO.
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d. Survival Times. (A special application). S

Up until now the exact correlation structure of xi,xj, i,jT 0

has been assumed to be known. Below is presented an application of

the bivariate method in a situation where the exact correlations are

not known. The application will be quite complex and given without

rigorous justification. The author plans to give more justification

in a later technical report or thesis. Those who are not interested S

in this application may wish to skip this section.

Assume the classical survival model with no censoring where the

time of death is a random variable. Let St. be the probability of

surviving to time ti where 0 < t1 < t2 < ... < tk . Assume that a

sample of m individuals is followed starting at time zero and the

time of death of each individual is recorded. Let St (number of
1

individuals alive at time t.)/m be the sample estimate of S

for i = 1,2,...,k. If m is large then by the multivariate central

limit theorem

St 1 t 1

1 - 1 0

StI  St1vn t2  t2 approximately N

S tk 0

where Z ii= S (l-S )
i i

and

ij = (1-S t)S for i < j

1 4



Often it is desirable to build (l-aF) joint confidence intervals

for the Sti i=l,2, .. ,k. Unfortunately, the variance of (S -S )

and the correlation of (St.-St.' S.-S ) depend on the true unknown
t i . t.

values of S and S .
1 JThe current way to construct these simultaneous confidence

intervals uses the Bonferroni method. For each time t., i=l ... k,

upper and lower limits for the confidence interval of S are
I

derived in (Fleiss page 14) and given below

Bi 1
(22a) St = (S is the upper limit)

tui 1 ui

B-$
(22b) S (S is the lower limit)

X" 1 11

where

B. =2mS + (z )2-iz •(z )2_(2 +.!) +T4St(m(l- S )+)S 1 (F/2k)

i /()ti

i= 2(m+(za ))') "

1(F/ F2k 2

(L/2) 4C.

and z is the value such that f(x)dx = (1--!)
(OF/2k -_2

The z term in the above formulas was derived from the
(F/ 2k~ /

Bonferroni procedure: dividing aF/2 by k. Below is a procedure based

on the bivariate method which derives a smaller value for the z term

producing tighter intervals which will have at least a (l-aF) joint

confidence.
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STEP I.

Clearly the best tree T 0 for this problem is S t-S -..-
1 2 k

The sample estimate of the correlation between S t and S t is

S1 
i ~l(1l

(23) Cor(S 2S ) -_____________

St (1-S~ ) S t(1- S ).
-/^ i+l .5+1 i

for i=l,2,.. .,k-l

So using these correlation estimates, derive z 01'F from the

bivariate method applied to T 0  using the Newton-Raphson procedure

with f(z) = (9- and f'(z) =(10). Replace z (2) by z 0

in equations (22a) and (22b) and let the k upper limits obtained

be S' ,S',. ,ST and the k lower limits obtained by

t. 2 9  tk

2x' k2 5

STEP II.

(a) Based on the values S' ,St ,St calculate
t l t2u2.. ku

cor(S' ,S' using formula (23).Then using these calculations,
tiu" i+l,u

derive z O'cF from the bivariate method applied to To using the

Newton-Raphson procedure with f(z) = (9)-ai and f'(z) = (10).
F

Replace z ( /k by this value of z0in equation (22a) to obtain

new upper limits 5" sit ... ,s" C
t iu t 2u'.. t ku
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(b) Based on the values St ,S , ...,StkZ calculate

cor(S t ,' ) using formula (23). Then using these correlations,
t. tik ti+l,9.

derive z 0!a, from the bivariate method applied to T using the

Newton-Raphson procedure with f(z) = (9)-a F  and f'(z) = (10).

Replace z by this value of z0  in equation (22b) to obtain(ciF/2k)

new lower limits SI S" .. "
tlg' t2' "' tkz "

It is claimed that the (S" ,S" ) will form a set of jointt iz t i u

confidence intervals of level at least (1-a F) and that these intervals

will be tighter than those produced using the Bonferroni method.

The justification for this claim is that in Step I, we calculate

the upper limits S' ,... S' and use these upper limits to get a
tl tku

better estimate of the true upper bound correlation structure and with

this, get the estimates S" ,.... S" in Step II. Likewise for lowertlu tku

limits.

4
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VII. Modifications on Reions, Distributions and Methods. S
The improved Bonferroni method described which used integration

over univariate, bivariate and trivariate distributions to get upper

bounds for probabilities over multivariate normal cubes centered at

zero could be slightly modified to handle the following situations.

A. Everything described previously could be applied to handle

multivariate t distributions by replacing the univariate, bivariate

and trivariate normal integrals by the appropriate univariate. bivari-

ate and trivariate t integrals. The conservative assumption of

independence, as an upper bound for the area outside the rectangle

will, however, not necessarily hold for t-distribution regions. Also

the correlation coefficients Pk,Z must be known (as will be the

case for linear regression estimates of coefficients). Further study

needs to be done for the case where P k, are estimated.

B. The cubes centered at zero could be replaced with rectangular

regions centered anywhere. Analogs of (9) and (16) could then be

used replacing the lower limit of integration -z with zLi and the

upper limit of integration z with z U for the i-th marginal.

Unless the rectangle is centered exactly at the origin, the conservative

assumption of independence as an upper bound for the area outside of the

rectangle will not necessarily hold.

C. Some or all of the rectangular regions may be replaced with

half plane or orthant like regions in which case analogs of (9) and

(16) are used with either the lower limit of integration -z being

replaced by -- or the upper limit of integration z being replaced

by -. Again the conservative assumption of independence as an upper

bound for the area outside of the region will not necessarily hold.
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D. These methods could be modified to work for unions of

disjoint sets of the types in B and C with normal or t

distributions. The calculations might be quite complicated however.
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n
Upper and Exact Bounds for mL = Pr U Xi (-iZF,oizF) where X"-N(O,Z)

i =1 i iF

for zF = 1.96, 2.25, 2.5, 2.75

n = 4,5,6,...,20

Calculated under:

Column (3): Conservative assumption of independence

Column (4): Using bivariate method assuming there exists a tree T

connecting (X 1 ,X 2 .... ,X) with IPxx = P for all e.j,-T.

1 .. 513x x

Column (5): Using trivariate method assuming there exists a tree T

as described for column 4 and a tree T' constructed from

that tree such that P -- P for all ei'3,Jj'CT'"

Column (6): The exact probability calculated under the assumption of

eauicorrelationPxkxz =- P for all k;Z

Colmun (7): Using trivariate method assuming there exists a tree T

as described in column 4 and a tree T' constructed from

that tree such that P = p2 for all e..,e jT'.

I..
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n
Table la. Upper Bounds For Pr{( U Xi)e(-z,z)}

i= 1

z=1.96

RHO Number Independence Bivariate Trivariate Exact for Trivariate
Pi P ij Equicorrelated P (P ij)2

Case P P P'
ijjj'k ij,jj'T'

all k,Z

.100 3 0.14261 --- 0.14188 0.14188 0.14212

.100 4 0.18548 --- 0.18412 ---

.100 5 0.22620 --- 0.22408

.ijO 6 0.26439 --- 0.26190 ---

.100 7 0.30164 --- 0.29771

.100 8 0.33656 --- 0.33165

.100 9 0.36973 --- 0.36382 ---

.100 10 0.40124 --- 0.39432 ---

.100 11 0.43117 --- 0.42325 ---

.100 12 0.45961 0.45069 ---
100 13 0.48663 --- 0.47674
.100 14 0.51299 --- 0.50147 ---
.100 15 0.53668 --- 0.52496 ---
.100 16 0.55984 --- 0.54727 ---

.100 17 0.58185 .- 0.56846 ---

.100 18 0.60275 --- 0.58861 ---

.100 19 0.62261 --- 0.60775 ---

.100 20 0.64148 --- 0.62597 ---

.200 3 0.14261 --- 0.13972 0.13972 0.14059

.200 4 0.18548 --- 0.18300 0.18047 0.18475

.200 5 0.22620 --- 0.21827 --- 40

.200 6 0.26489 --- 0.25379 ---

.200 7 0.30164 --- 0.28721

.200 8 0.33656 --- 0.31871 ---

.200 9 0.36973 --- 0.34845 ---

.200 10 0.40124 --- 0.37656 ---

.200 11 0.43117 --- 0.40315 ---

.200 12 0.45961 --- 0.42835 ---

.200 13 0.48663 --- 0.45224 ---

.200 14 0.51229 --- 0.47493 ---

.200 15 0.53668 0.49648 ---

.200 16 0.55984 --- 0.51697 ---

.200 17 0.58185 --- 0.53647 %

.200 18 0.60275 --- 0.55039 ---

.200 19 0.62261 --- 0.57274 ---

.200 20 0.64148 --- 0.58961

means value is higher than that given by conservative assumption of
independence.
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Table la Continued.

z=1.96

RHO Number Independence Bivariate Trivariate Exact for Trivariate
Pij .. Equicorrelated P = (P.

= j CaseP P i'

ij,jj'ET kZ .. j'FT %.e
all k,Z JJ

.300 3 0.14261 0.14023 0.13623 0.13623 0.13802

.300 4 0.18548 0.18535 0.17734 0.17409 0.18092

.300 5 0.22620 --- 0.21846 0.20891 0.22382

.300 6 0.26489 --- 0.25959 0.24127 ---

.300 7 0.30164 --- 0.30069 0.27146 ---

.300 8 0.33656 --- 0.29971

.300 9 0.36973 --- 0.32624 ---

.300 10 0.40124 --- 0.35122

300 11 0.43117 0.37479

.300 12 0.45961 0.39708 ---

.300 13 0.48663 --- 0.41821 ---

.300 14 0.51229 0.43827 ---

.300 15 0.53668 --- 0.45733 -

.300 16 0.55984 --- 0.47549

.300 17 0.58185 0.49280 ---

.300 18 0.60275 0.50932

.300 19 0.62261 --- 0.52511

.300 20 0.64148 --- 0.54021 ---

.400 3 0.14261 0.13646 0.13146 0.13146 0.13427 M

.400 4 0.15848 0.17970 0.16968 0.16582 0.17531

.400 5 0.22620 0.22293 0.20791 0.19658 0.21635

.400 6 0.26489 --- 0.24614 0.22557 0.25740

.400 7 0.30164 --- 0.28436 0.25194 0.29844

.400 8 0.33656 0.32259 0.27645 ---

.400 9 0.36973 0.36082 0.29932 ---

.400 !0 0.40124 --- 0.39905 0.32075

.400 0.43117 --- 0.34092 ---

.400 12 0.45961 --- 0.35995

.400 13 0.48663 0.37796

.400 14 0.51229 0.39505

.400 15 0.53668 --- 0.41130 .

.400 16 0.55984 --- 0.42678 ---

.400 17 0.58185 --- 0.44156 ---

.400 18 0.60275 --- 0.45568 ---

.400 19 0.62261 --- 0.46921 ---

.400 20 0.64148 --- 0.48218 ---

means value is higher than that given by conserva-ive assumption of

independence. 51
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Table la Continued.

z=1.96

RHO Number Independence Bivariate Trivariate Exact for Trivariate
P.' Pij Equicorrelated P = (Pij)

Case P P ij

alljk. ij,jj'cT'

.500 3 0.14261 0.13348 0.12543 0.12543 0.12922

.500 4 0.18548 0.17223 0.16013 0.15582 0.16769

.500 5 0.22620 0.21297 0.19482 0.18285 0.20617 6

.500 6 0.26489 0.25371 0.22952 0.20728 0.24465

.500 7 0.30164 0.29445 0.26421 0.22959 0.28313

.500 8 0.33656 0.33520 0.29890 0.25013 0.32160

.500 9 0.36973 -- 0.33360 0.26917 0.36008

.500 10 0.40124 --- 0.36829 0.28693 0.39856

.500 11 0.43117 - 0.40299 0.30356 ---

.500 12 0.45961 0.43768 0.31920

.500 13 0.48663 0.47238 0.33397

.500 14 0.51229 0.50705 0.34796--
.500 15 0.53668 --- 0.36125
.500 16 0.55984 --- 0.37390 ---

.500 17 0.58185 --- 0.38597 -.

.500 18 0.60275 --- 0.39751 ---

.500 19 0.62261 --- 0.40857

.500 20 0.64148 --- 0.41918

.600 3 0.14261 0.12509 0.11809 0.11809 0.12263

.600 4 0.18548 0.16263 0.14864 0.14404 0.15771

.600 5 0.22620 0.20018 0.17919 0.16677 0.19280

.600 6 0.26489 0.23773 0.20974 0.18681 0.22788

.600 7 0.30164 0.27527 0.24029 0.20498 C.26297

.600 8 0.33656 0.31282 0.27084 0.22154 0.29806

.600 9 0.36973 0.35037 0.30139 0.23678 0.33314

.600 10 0.40124 0.38791 0.33194 0.25090 0.36823

.600 11 0.43117 0.42546 0.36249 0.26406 0.40331

.600 12 0.45961 0.39303 0.27639 0.43840

.600 13 0.48663 0.42358 0.28798 0.47349 .:

.600 14 0.51229 --- 0.45413 0.29893 0.50957

.600 15 0.53668 0.48468 0.30931 ---

.600 16 0.55984 0.51523 0.31917

.600 17 0.58185 0.54578 0.32857 ---

.600 18 0.60275 --- 0.57633 0.33754 ---

.600 19 0.62261 0.60688 0.34613

.600 20 0.64148 0.63743 0.35437

"---" means value is higher than that given by conservative assumption

of independence.
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Table la Continued.

z=1.96

RHO Number Independence Bivariate Trivariate Exact for Trivariate
P = Pij Equicorrelated Pij' = (P i)2

ij,jj'cT' kZ ij,jj'cT'
all k,9.

.700 3 0.14261 0.11689 0.10920 0.10920 0.11414

.700 4 0.18458 0.15034 0.13496 0.13035 0.14483

.700 5 0.22620 0.18379 0.16072 0.14839 0.17553

.700 6 0.26489 0.21724 0.18648 0.16416 0.20623

.700 7 0.30164 0.25069 0.21224 0.17820 0.23692

.700 8 0.33656 0.28414 0.23799 0.19087 0.26762

.700 9 0.36973 0.31759 0.26375 0.20243 0.29841

.700 10 0.40124 0.35104 0.28951 0.21306 0.32901

.700 11 0.43117 0.38449 0.31527 0.22292 0.35970

.700 12 0.45961 0.41794 0.34103 0.23211 0.39040

.700 13 0.48663 0.45139 0.36679 0.24071 0.42109 9.

.700 14 0.51229 0.48484 0.39254 0.24881 0.45179

.700 15 0.53668 0.51828 0.41830 0.25646 0.48248

.700 16 0.55984 0.55173 0.44406 0.26371 0.51318

.700 17 0.58185 --- 0.46982 0.27059 0.54387

.700 18 0.60275 --- 0.49558 0.27716 0.57457

.700 19 0.62261 --- 0.52134 0.28343 0.60526

.700 20 0.64148 --- 0.54709 0.28943 0.63596

.800 3 0.14261 0.10611 0.09822 0.09822 0.10307

.800 4 0.18548 0.13416 0.11838 0.11413 0.12809

.800 5 0.22620 0.16222 0.13855 0.12734 0.15310

.800 6 0.26489 0.19028 0.15871 0.13867 0.17812

.800 7 0.30164 0.21833 0.17888 0.14861 0.20314

.800 8 0.33656 0.24639 0.19904 0.15747 0.22815

.800 9 0.36973 0.27444 0.21921 0.16548 0.25317

.800 10 0.40124 0.30250 0.23927 0.17279 0.27819

.800 11 0.43117 0.33056 0.25954 0.17952 0.30320

.800 12 0.45961 0.35861 0.27970 0.18576 0.32822

.800 13 0.48663 0.38667 0.29987 0.19167 0.35324

.800 14 0.51229 0.41472 0.32003 0.19701 0.37825

.800 15 0.53668 0.44278 0.34020 0.20213 0.40327

.800 16 0.55984 0.47084 0.36036 0.20697 0.42829

.800 17 0.58185 0.49889 0.38053 0.21155 0.45331

.800 18 0.60275 0.52695 0.40069 0.21591 0.47832

.800 19 0.62261 0.55500 0.42086 0.22006 0.50334

.800 20 0.64148 0.58306 0.44102 0.22402 0.52836

"---" means value is higher than that given by conservative assumption of II
independence.
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Table la Continued.

z=1.96

RHO Number Independence Bivariate Trivariate Exact for Trivariate
P *' = P.. Equicorrelated Pij' = (Pij) 2

Case P =P 1ij,jj'T' k ij,jj'T'
all k,Z

.900 3 0.14261 0.09070 0.08364 0.08364 0.08764

.900 4 0.18548 0.11105 0.09693 0.09359 0.10493

.900 5 0.22620 0.13141 0.11023 0.10157 0.12223

.900 6 0.26489 0.15176 0.12352 0.10825 0.13952

.900 7 0.30164 0.17211 0.13681 0.11399 0.15681

.900 8 0.33656 0.19246 0.15011 0.11904 0.17410

.900 9 0.36973 0.21282 0.16340 0.12354 0.19140

.900 10 0.40124 0.23317 0.17669 0.12761 0.20869

.900 11 0.43117 0.25352 0.18999 0.13132 0.22598

.900 12 0.45961 0.27387 0.20328 0.13473 0.24328

.900 13 0.48663 0.29423 0.21657 0.13788 0.26057

.900 14 0.51229 0.31458 0.22987 0.14082 0.27786

.900 15 0.53668 0.33493 0.24316 0.14357 0.29515

.900 16 0.55984 0.35528 0.25645 0.14615 0.31245

.900 17 0.58185 0.37564 0.26975 0.14859 0.32974

.900 18 0.60275 0.39599 0.28304 0.15090 0.34703

.900 19 0.62261 0.41634 0.29633 0.15309 0.36433

.900 20 0.64148 0.43669 0.30963 0.15517 0.38162

.990 3 0.14261 0.06315 0.06018 0.06018 *

.990 4 0.18548 0.06973 0.06378 0.06264 *

.990 5 0.22620 0.07631 0.06739 0.06449 *

.990 6 0.26489 0.08289 0.07099 0.06597 *

.990 7 0.30164 0.08947 0.07460 0.06720 *

.990 8 0.33656 0.09605 0.07820 0.06825 *

.990 9 0.36973 0.10263 0.08181 0.06917 *

.990 10 0.40123 0.10920 0.08541 0.06998 *

.990 11 0.43117 0.11578 0.08902 0.07071 *

.990 12 0.45961 0.12236 0.09262 0.07136 *

.990 13 0.48663 0.12894 0.09623 0.07196 *

.990 14 0.51229 0.13552 0.09982 0.07252 *

.990 15 0.53668 0.14210 0.10344 0.07303 *

.990 16 0.55984 0.14868 0.10704 0.07350 *

.990 17 0.58185 0.15526 0.11065 0.07395 *

.990 18 0.60275 0.16183 0.11425 0.07436 * 0

.990 19 0.62261 0.16841 0.11786 0.07475 *

.990 20 0.64148 0.17499 0.12146 0.07513 *

means value is missing due to inability of LMSL subroutine DMLIN
to integrate.
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Table lb, Upper bounds for Pr{( U i)e(-z,z)}

i=l 1

z=2.25

RHO Number Independence Bivariate Trivariate Exact for Trivariate
Pij = P.. Equicorrelated P = (Pij

1jCaseP P
ij,jj'cT' kk -2 

P

all k,Z ij,jj'iT'

.100 3 0.07157 0.07195 0.07128 0.07128 0.07137

.100 4 0.09427 --- -- 0.09455 ---

.100 5 0.11641 ----- 0.11625

.100 6 0.13801 --- -- 0.13726 ---

.100 7 0.15909 --- 0.15789

1.00 8 0.17965 --- -- 0.17786 ---

.100 9 0.19971 --- --- 0.19730 ---

.100 10 0.21927 --- -- 0.21622 --- S

.100 11 0.23836 --- 0.23464 ---

.100 12 0.25698 --- 0.25256 ---

.100 13 0.27515 --- 0.27001 ---

.100 14 0.29287 --- 0.28701 ---

.100 15 0.31016 ----- 0.30357 ---

.100 16 0.32702 --- 0.31969

.100 17 0.34348 --- -- 0.33540 ---

.100 18 0.35953 --- 0.35070 ---

.100 19 0.37519 --. 0.36561 ---

.100 20 0.39046 --- 0.38010 ---

.200 3 0.07157 0.07132 0.07039 0.07039 0.07075

.200 4 0.09427 --- 0.09290 0.09318 0.09362

.200 5 0.11641 --- 0.11540 0.11380 ---

.200 6 0.13801 0.13791 0.13370 ---

.200 7 0.15909 ----- 0.15242 ---

.200 8 0.17965 --- 0.17151 ---

.200 9 0.19971 .--. 0.18949 ---

.200 10 0.21927 ----- 0.20691 ---

.200 11 0.23836 ----- 0.22377 ---

.200 12 0.25698 --- --- 0.24012

.200 13 0.27515 --- 0.25598 --- " .

.200 14 0.29287 --- 0.27136 ---

.200 15 0.31016 --- 0.28630 ---

.200 16 0.32702 --- 0.30080

.200 17 0.34348 ... 0.31490 ---

.200 18 0.35953 0.32861 ---

.200 19 0.37519 --- 0.34194 ---

.200 20 0.39046 --- 0.35491 ---

means value is higher than that given by conservative assumption of

independence.
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Table lb Continued.

z=2.25

RHO Number Independence Bivariate Trivariate Exact for Trivariate
PW = P Equicorrelated Pij, = (P *)2

ij,jj'cT' Case Pki E P ij,jj'eT'

all k,Z

.300 3 0.07157 0.07025 0.06892 0.06892 0.06968

.300 4 0.09427 0.09315 0.09049 0.08572 0.09200

.300 5 0.11641 0.11606 0.11205 0.10886 0.11433

.300 6 0.13801 --- 0.13362 0.12723 0.13665

.300 7 0.15909 --- 0.15519 0.14478 0.15898

.300 8 0.17965 0.17676 0.16158 ---

.300 9 0.19971 -- 0.19833 0.17770 ---

.300 10 0.21927 --- 0.19318 ---

.300 11 0.23836 0.20808

.300 12 0.25698 --- 0.22243

.300 13 0.25715 --- 0.23628

.300 14 0.29287 --- 0.24966 ---

.300 15 0.31016 --- 0.26259 ---

.300 16 0.32702 0.27511 ---

.300 17 0.34348 --- 0.28724

.300 18 0.35953 ... 0.29900

.300 19 0.37519 0.43668 0.41401 0.31041 ---

.300 20 0.39046 0.45958 0.43557 0.32150 ---

.400 3 0.07157 0.06363 0.06684 0.06684 0.06806

.400 4 0.09427 0.09079 0.08711 0.08572 0.08955

.400 5 0.11641 0.11291 0.1073S 0.10317 0.11105

.400 6 0.13801 0.13502 0.12766 0.11956 0.13254

.400 7 0.15909 0.15714 0.14793 0.13503 0.15404

.400 8 0.17965 0.17925 0.16820 0.14968 0.17553

.400 9 0.19971 -- 0.18848 0.16359 0.19702

.400 10 0.21927 0.20875 0.17686 0.21852

.400 11 0.23836 0.22902 0.18953 ---

.400 12 0.25698 0.24930 0.20167 ---

.400 13 0.27515 0.26957 0.21332

.400 14 0.29287 --- 0.28984 0.22452 --- 0

.400 15 0.31016 0.31011 0.23530

.400 16 0.32702 --- 0.24571 ---

.400 17 0.34348 --- 0.25575 ---

.400 18 0.35953 --- 0.26547 ---

.400 19 0.37519 --- 0.27487 ---

.400 20 0.39046 --- 0.28399 ---

*• --- means value is higher than that given by conservative assumption of

independence.
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Table lb Continued. S

z=2.25

RHO Number Independence Bivariate Trivariate Exact for Trivariate 2
= P.. Equicorrelated Pij = (P2i)

ij,jj'CT' Pka ij,jj'cT'
all k,z

.500 3 0.07157 0.06651 0.06410 0.06410 0.06579

.500 4 0.09427 0.08754 0.08272 0.08090 0.08610

.500 5 0.11641 0.10857 0.10134 0.09625 0.10641 -

.500 6 0.13801 0.12960 0.11996 0.11042 0.12672

.500 7 0.15909 0.15063 0.13858 0.12361 0.14703

.500 8 0.17965 0.17166 0.15720 0.13595 0.16734

.500 9 0.19971 0.19269 0.17582 0.14757 0.18765

.500 10 0.21927 0.21372 0.19444 0.15855 0.20796

.500 11 0.23836 0.23475 0.21306 0.16896 0.22827

.500 12 0.25698 0.25578 0.23168 0.17887 0.24858

.500 13 0.27515 --- 0.25030 0.18833 0.26889

.500 14 0.29287 0.26892 0.19739 0.28921

.500 15 0.31016 0.28754 0.20607 0.30952

.500 16 0.32702 0.30616 0.21441 ---

.500 17 0.34348 0.32478 0.22433 ---

.500 18 0.35953 0.34340 0.23017

.500 19 0.37519 0.36202 0.23765

.500 20 0.39046 0.38064 0.24487 ---

.600 3 0.07157 0.06359 0.06061 0.06061 0.06271

.600 4 0.09427 0.08316 0.07720 0.07513 0.08140

.600 5 0.11641 0.10273 0.09379 0.08811 0.10009

.600 6 0.13801 0.12230 0.11038 0.09934 0.11878

.600 7 0.15909 0.14183 0.12697 0.11068 0.13747

.600 8 0.17965 0.16145 0.14356 0.12067 0.15616

.600 9 0.19971 0.18102 0.16015 0.12998 0.17485 6

.600 10 0.21927 0.20059 0.17674 0.13870 0.19355

.600 11 0.23336 0.22016 0.19333 0.14692 0.21224

.600 12 0.25698 0.23973 0.20992 0.15469 0.23093

.600 13 0.27515 0.25930 0.22651 0.16207 0.24962

.600 14 0.29287 0.27887 0.24309 0.16909 0.26831

.600 15 0.31016 0.29844 0.25968 0.17580 0.28700

.600 16 0.32702 0.31802 0.27627 0.18221 0.30569

.600 17 0.34348 0.33759 0.29286 0.18837 0.32438

.600 18 0.35953 0.35716 0.30945 0.19428 0.34307

.600 19 0.37519 --- 0.32604 0.19997 0.36176

.600 20 0.39046 0.34263 0.20547 0.38045

means value is higher than that given by conservative assumDtion of %
independence.
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Table lb Continued.

z=2.25

RHO Number Independence Bivariate Trivariate Exact for Trivariate
Pij = P ijEquicorrelated Pij (P. ")

Case P ~P ij 1
ij,jj' cT' kZ ij,jj'eT'

all k,t

.700 3 0.07157 0.05968 0.05620 0.05620 0.05858

.700 4 0.09427 0.07729 0.07033 0.06814 0.07511

.700 5 0.11641 0.09491 0.08447 0.07854 0.09163

.700 6 0.13801 0.11252 0.09860 0.08780 0.10815

.700 7 0.15909 0.13013 0.11274 0.09617 0.12467

.700 8 0.17965 0.14775 0.12687 0.10381 0.14119

.700 9 0.19971 0.16536 0.14101 0.11086 0.15771

.700 10 0.21927 0.18298 0.15514 0.11741 0.17424

.700 11 0.23836 0.20059 0.16927 0.12353 0.19076

.700 12 0.25698 0.21820 0.18341 0.12928 0.20728

.700 13 0.27515 0.23582 0.19754 0.13471 0.22380

.700 14 0.29287 0.25343 0.21168 0.13985 0.24032

.700 15 0.31016 0.27105 0.22581 0.14473 0.25684

.700 16 0.32702 0.28866 0.23995 0.14934 0.27337

.700 17 0.34348 0.30628 0.25408 0.15383 0.28989

.700 18 0.35953 0.32389 0.26822 0.15809 0.30641

.700 19 0.37519 0.34150 0.28235 0.16218 0.32293

.700 20 0.39046 0.35912 0.29649 0.16611 0.33945

.800 3 0.07157 0.05430 0.05053 0.05053 0.05299

.800 4 0.09427 0.06923 0.06169 0.05956 0.06659

.800 5 0.11641 O.n8416 0.07284 0.06714 0.08020

.800 6 0.13801 0.09909 0.08399 0.07384 0.09381

.800 7 0.15909 0.11401 0.09515 0.07974 0.10742

.800 8 0.17965 0.12895 0.10630 0.08505 0.12103

.800 9 0.19971 0.14387 0.11746 0.08990 0.13464

.800 10 0.21927 0.15880 0.12861 0.09439 0.14825

.800 11 0.23836 0.17372 0.13977 0.09848 0.16186

.800 12 0.25698 0.18865 0.15092 0.10233 0.17547

.800 13 0.27515 0.20358 0.16208 0.10594 0.18908

.800 14 0.29287 0.21851 0.17323 0.10934 0.20268

.800 15 0.31016 0.23343 0.18439 0.11255 0.21629

.800 16 0.32702 0.24836 0.19554 0.11560 0.22990

.800 17 0.34348 0.26329 0.20670 0.11850 0.24351

.800 18 0.35953 0.27821 0.21785 0.12126 0.25712

.800 19 0.37519 0.29314 0.22900 0.12391 0.27073

.800 20 0.39046 0.30807 0.24016 0.12644 0.28434
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Table lb Continued.

z=2.25

RHO Number Independence Bivariate Trivariate Exact for Trivariate
P P Equicorrelated Pi, = (P.

ij Case P =3
ij,jj'ET' kk P  ij,jj'cT'

all k,Z

.900 3 0.07157 0.04633 0.04277 0.04277 0.04485

.900 4 0.09427 0.05727 0.05015 0,04840 0.05437

.900 5 0.11641 0.06821 0.05753 0.05299 0.06375

.900 6 0.13801 0.07915 0.06491 0.05686 0.07232

.900 7 0.15909 0.09010 0.07229 0.06022 0.08278

.900 8 0.17965 0.10104 0.07967 0.06319 0.09231

.900 9 0.19971 0.11198 0.08705 0.06586 0.10752

.900 10 0.21927 0.12292 0.09443 0.06820 0.11019

.900 11 0.23836 0.13386 0.10181 0.07051 0.12132

.900 12 0.25698 0.14480 0.10910 0.07256 0.13030

.900 13 0.27515 0.15574 0.11657 0.07447 0.13979

.900 14 0.29287 0.16668 0.12395 0.07625 0.14882

.900 15 0.31016 0.17762 0.13133 0.07792 0.15903

.900 16 0.32702 0.18856 0.13871 0.07950 0.16805

.900 17 0.34348 0.19951 0.14609 0.08099 0.17794

.900 18 0.35953 0.21045 0.15347 0.08241 0.18621

.900 19 0.37519 0.22139 0.16085 0.08375 0.19728

.900 20 0.39046 0.23233 0.16823 0.08504 0.20571

.990 3 0.07157 0.03159 0.03000 0.03000 *

.990 4 0.09427 0.03516 0.03198 0.03136 *

.990 5 0.11641 0.03873 0.03396 0.03234 *

.990 6 0.13801 0.04230 0.03594 0.03322 *

.990 7 0.15909 0.04586 0.03792 0.03391 *

.990 8 0.17965 0.04943 0.03990 0.03450 *

.990 9 0.19971 0.05300 0.04188 0.03511 *

.990 10 0.21927 0.05657 0.04387 0.03547 *

.990 11 0.23836 0.06014 0.04585 0.03588 *

.990 12 0.25698 0.06371 0.04783 0.03625 *

.990 13 0.27515 0.06728 0.04981 0.03659 *

.990 14 0.29287 0.07085 0.05179 0.03691 *

.990 15 0.31016 0.07442 0.05377 0.03719 *

.990 16 0.32702 0.07799 0.05575 0.03746 * .

.990 17 0.34348 0.08156 0.05773 0.03771 *

.990 18 0.35935 0.08513 0.05971 0.03795 *

.990 19 0.37519 0.08870 0.06169 0.03817 *

.990 20 0.39046 0.09227 0.06368 0.03834 *
0

means value is missing due to the inability of DMLIN to integrate.
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Table ic. Upper bounds for Pr{( U X ib(-z,z)}

i=l

z=2.50

RHO Number Independence Bivariate Trivariate Exact for Trivariate
P . = P.. Equicorrelated P ij = (P.)

'J Case P ijP' Jij,jj'F-T' asPki ij,jj'F-T'

all k,Z

.100 3 0.03680 0.03669 0.03669 0.03672
.100 4 0.04876 0.04873 0.04854 ---

.100 5 0.06057 --- 0.06220 ---

.100 6 0.07224 ----- 0.07170 ---

.100 7 0.08376 --- 0.08303 ---

.100 8 0.09514 0.09418 ---

.100 9 0.10638 --- 0.10517 ---

.100 10 0.11748 --- 0.11599 ---

.100 11 0.12844 --.--- 0.12665 ---

.100 12 0.13926 --- 0.13716 ---

.100 13 0.14995 --- 0.14752 ---

.100 14 0.16051 ----- 0.15772

.100 15 0.17093 --- 0.16778 ---

.100 16 0.18123 --- 0.17769 ---

.100 17 0.19140 --- -- 0.18746

.100 18 0.20144 --- 0.19710 ---

.100 19 0.21136 --- -- 0.20659 ---

.100 20 0.22115 ----- 0.21595 ---

.200 3 0.03680 0.03663 0.03634 0.03634 0.03648

.200 4 0.04876 0.04874 0.04815 0.04786 0.04844

.200 5 0.06057 --- 0.05996 0.05913 0.06039

.200 6 0.07224 --- 0.07177 0.07013 ---

.200 7 0.08376- 0.08359 0.09090

.200 8 0.09514 --- 0.09143

.200 9 0.10638 --- 0.10516 ---

.200 10 0.11748 0.11599 ---

.200 11 0.12844 --- 0.12174

.200 12 0.13926 --- 0.13144

.200 13 0.14995 0.14095

.200 14 0.16051 - 0.15028 ---

.200 15 0.17093 .... 0.15943 ---

.200 16 0.18123 --- 0.16288 ---

.200 17 0.19140 --- 0.17724 ---

.200 18 0.20144 --- 0.18590 ---

.200 19 0.21136 --- 0.19441

.200 20 0.22115 --- 0.22781 ---

*"---"means value is higher than that given by conservative assumption of
independence.
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Table lc Continued. S

z-2.50

RHO Number Independence Bivariate Trivariate Exact for Trivariate 2
Pij' Pj a Equicorrelated P.., = (P)ij

ij,jj'tT' C k P Jjj 'r
all k,Z

.300 3 0.03680 0.03620 0.03573 0.03573 0.03604

.300 4 0.04876 0.04809 0.04715 0.04673 0.04777

.300 5 0.06057 0.05999 0.05857 0.05733 0.05950

.300 6 0.07224 0.07188 0.06999 0.06758 0.07132

.300 7 0.08376 --- 0.08142 0.07750 0.08296

.300 8 0.09514 --- 0.09284 0.08712 0.09470

.300 9 0.10638 0.10426 0.09646 ---

.300 10 0.11748 --- 0.11568 0.10553 ---

.300 11 0.12844 --- 0.12710 0.11436 ---

.300 12 0.13926 --- 0.13852 0.12295 ---

.300 13 0.14995 --- 0.14994 0.13133 ---

.300 14 0.16051 --- 0.13950 ---

.300 15 0.17093 0.14747

.300 16 0.18123 --- 0.15526 ---

.300 17 0.19140 --- 0.16288 ---

.300 18 0.20144 --- 0.17032 ---

.300 19 0.21136 0.17761

.300 20 0.22115 --- 0.18475 ---

.400 3 0.03680 0.03554 0.03483 0.03485 0.03535

.400 4 0.04876 0.04710 0.04568 0.04509 0.04672

.400 5 0.06057 0.05866 0.05653 0.05481 0.05809

.400 6 0.07224 0.07022 0.06738 0.06408 0.06946

.400 7 0.08376 0.08178 0.07824 0.07295 0.08083

.400 8 0.09514 0.09334 0.08909 0.08145 0.09220

.400 9 0.10638 0.10491 0.09994 0.08962 0.10357

.400 10 0.11748 0.11647 0.11079 0.09749 0.11494

.400 11 0.12844 0.12803 0.12164 0.10509 0.12631

.400 12 0.13926 --- 0.13249 0.11244 0.13768

.400 13 0.14995 --- 0.14334 0.11956 0.14905

.400 14 0.16051 --- 0.15419 0.12645 0.16043

.400 15 0.17093 0.16504 0.13315 ---

.400 16 0.18123 --- 0.17590 0.13966

.400 17 0.19140 --- 0.18675 0.14599

.400 18 0.20144 --- 0.19760 0.15216 ---

.400 19 0.21136--- 0.20845 0.15812 ---

.400 20 0.22115 --- 0.21930 0.16403 ---

means value is higher than that given by conservative assumption of
independence.
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Table ic Continued.

z-2.50

RHO Number Independence Bivariate Trivariate Exact for Trivariate
Pij= P Equicorrelated P = (P )2

Case P P
ij,jj'ET' PkZ ij,jj'cT'

all k,..

.500 3 0.03680 0.03458 0.03358 0.03358 0.03433

.500 4 0.04876 0.04566 0.04367 0.04288 0.04517

.500 5 0.06057 0.05674 0.05375 0.05154 0.05600

.500 6 0.07224 0.06782 0.06383 0.05965 0.06684

.500 7 0.08376 0.07890 0.07391 0.06731 0.07767

.500 8 0.09514 0.08998 0.08400 0.07456 0.08851

.500 9 0.10638 0.10106 0.09408 0.08146 0.09934

.500 10 0.11748 0.11214 0.10416 0.08805 0.11018

.500 11 3.12844 0.12322 0.11425 0.09436 0.12101

.500 12 0.13926 0.13431 0.12433 0.10042 0.13184

.500 13 0.14995 0.14539 0.13441 0.10624 0.14268

.500 14 0.16051 0.15647 0.14450 0.11856 0.15351

.500 15 0.17093 0.16755 0.15458 0.12028 0.16435

.500 16 0.18123 0.17863 0.16466 0.12252 0.17518

.500 17 0.19140 0.18971 0.17475 0.12760 0.18602

.500 18 0.20144 0.20079 0.18483 0.13252 0.19685

.500 19 0.21136 --- 0.19491 0.13706 0.20769

.500 20 0.22115 --- 0.20499 0.14195 0.21852

.600 3 0.03680 0.03322 0.03191 0.03191 0.03289

.600 4 0.04876 0.04362 0.04100 0.04004 0.04296

.600 5 0.06057 0.05402 0.05008 0.04745 0.05302 •

.600 6 0.07224 0.06443 0.05917 0.05427 0.06309

.600 7 0.08376 0.07483 0.06826 0.06060 0.07316

.600 8 0.09514 0.08523 0.07734 0.06653 0.08323

.600 9 0.10638 0.09563 0.08643 0.07211 0.09330

.600 10 0.11748 0.10603 0.09552 0.07739 0.10337

.600 11 0.12844 0.11643 0.10461 0.08240 0.11343

.600 12 0.13926 0.12683 0.11369 0.08718 0.12350

.600 13 0.14995 0.13723 0.12278 0.09174 0.13357

.600 14 0.16051 0.14764 0.13187 0.09611 0.14364

.600 15 0.17093 0.15804 0.14095 0.10031 0.15371

.600 16 0.18123 0.16844 0.15004 0.10435 0.16377

.600 17 0.19140 0.17884 0.15913 0.10825 0.17384

.600 18 0.20144 0.18924 0.16822 0.11201 0.18391

.600 19 0.21136 0.19964 0.17730 0.11565 0.19398

.600 20 0.22115 0.21004 0.18639 0.11918 0.20405

* means value is higher than that given by conservative assumption of 0

independence.
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Table ic Continued.

z-2.50

RHO Number Independence Bivariate Trivariate Exact for Trivariate
P ij= P.. Equicorrelated P.., = 2ij)

1i Case P uP
ij,jj'tT' k. ij,jj'ET'

all k,Z

.700 3 0.03680 0.03132 0.02969 0.02969 0.03086

.700 4 0.04876 0.04076 0.03752 0.03645 0.03986

.700 5 0.06057 0.05021 0.04534 0.04244 0.04885

.700 6 0.07224 0.05966 0.05317 0.04785 0.05785--

.700 7 0.08376 0.06911 0.06099 0.05279 0.06684

.700 8 0.09514 0.07855 0.06882 0.05735 0.07584

.700 9 0.10638 0.08800 0.07664 0.06159 0.08483

.700 10 0.11748 0.09745 0.08447 0.06557 0.09383

.700 11 0.12844 0.10690 0.09229 0.06930 0.10283

.700 12 0.13926 0.11635 0.10011 0.07284 0.11182

.700 13 0.14995 0.12579 0.10794 0.07620 0.12082

.700 14 0.16051 0.13524 0.11576 0.07939 0.12981

.700 15 0.17093 0.14469 0.12359 0.08244 0.13881

.700 16 0.18123 0.15415 0.13141 0.08536 0.14780

.700 17 0.19140 0.16359 0.13924 0.08817 0.15680

.700 18 0.20144 0.17303 0.14706 0.09087 0.16579 5

.700 19 0.21136 0.18248 0.15489 0.09346 0.17479

.700 20 0.22115 0.19193 0.16271 0.09597 0.18378

.800 3 0.03680 0.02859 0.02673 0.02673 0.02799

.800 4 0.04876 0.03667 0.03296 0.03188 0.03548

.800 5 0.06057 0.04475 0.03919 0.03629 0.04297

.800 6 0.07224 0.05284 0.04542 0.04018 0.05047

.800 7 0.08376 0.06092 0.05165 0.04367 0.05796

.800 8 0.09514 0.06900 0.05788 0.04684 0.06545

.800 9 0.10638 0.07709 0.06411 0.04988 0.07294

.800 10 0.11748 0.08517 0.07034 0.05244 0.08043

.800 11 0.12844 0.09325 0.07657 0.05500 0.08792

.800 12 0.13926 0.10134 0.08280 0.05731 0.09541

.800 13 0.14995 0.10942 0.08903 0.05952 0.10290

.800 14 0.16051 0.11750 0.09526 0.06162 0.11039

.800 15 0.17093 0.12559 0.10149 0.06361 0.11788 Z

.800 16 0.18123 0.13367 0.10772 0.06550 0.12537 A

.800 17 0.19140 0.14175 0.11395 0.06731 0.13286

.800 18 0.20144 0.14984 0.12018 0.06904 0.14035

.800 19 0.21136 0.15792 0.12641 0.07070 0.14784

.800 20 0.22115 0.16600 0.13264 0.07224 0.15534
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Table Ic Continued.

z=2.50

RHO Number Independence Bivariate Trivariate Exact for Trivariate
P1. = Pij Equicorrelated P ij =(P

Case P =P
ij,jj'ET' ki P  ij,jj'ET'

all k,Z

.900 3 0.03680 0.02439 0.02255 0.02255 0.02368

.900 4 0.04876 0.03037 0.02669 0.02576 0.02895

.900 5 0.06057 0.03635 0.03083 0.02840 0.03422

.900 6 0.07224 0.04233 0.03498 0.03066 0.03950

.900 7 0.08376 0.04832 0.03912 0.03263 0.04477

.900 8 0.09514 0.05430 0.04326 0.03439 0.05004

.900 9 0.10638 0.06028 0.04741 0.03597 0.05531

.900 10 0.11748 0.06626 0.05155 0.03742 0.06059

.900 11 0.12844 0 q7225 0.05569 0.03875 0.06586

.900 12 0.13926 C. . 323 0.05984 0.03998 0.07113

.900 13 0.14995 0.08421 0.06398 0.04113 0.07641

.900 14 0.16051 0.09020 0.06813 0.04211 0.08168

.900 15 0.17093 0.09618 0.07227 0.04322 0.08695

.900 16 0.18123 0.10216 0.07641 0.04417 0.09223

.900 17 0.19140 0.10814 0.08056 0.04508 0.09750

.900 18 0.20144 0.11413 0.08470 0.04594 0.10277

.900 19 0.21136 0.12011 0.08884 0.04677 0.10805

.900 20 0.22115 0.12609 0.09299 0.04755 0.11332

.990 3 0.03680 0.01636 0.01549 0.01549 *

.990 4 0.04876 0.01833 0.01660 0.01626 *

.990 5 0.06057 0.02030 0.01771 0.01684 *

.990 6 0.07224 0.02227 0.01881 0.01730 *

.990 7 0.08376 0.02423 0.01991 0.01770 *

.990 8 0.09514 0.02620 0.02102 0.01803 *

.990 9 0.10638 0.02817 0.02212 0.01832 *

.990 10 0.11748 0.03014 0.02323 0.01858 *

.990 11 0.12844 0.03211 0.02433 0.01881 *

.990 12 0.13926 0.03408 0.02544 0.01903 *

.990 13 0.14995 0.03605 0.02654 0.01922 *

.990 14 0.16051 0.03802 0.02765 0.01940 *

.990 15 0.17093 0.03999 0.02875 0.01957 *

.990 16 0.18123 0.04196 0.02986 0.01972 *

.990 17 0.19140 0.04393 0.03096 0.01987 *

.990 18 0.20144 0.04590 0.03207 0.02000 *

.990 19 0.21136 0.04787 0.03317 0.02013 *

.990 20 0.22115 0.04983 0.03428 0.02025 *

,

"*" means value is missing due to inability of DMLIN to integrate.
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Table Id. Upper Bounds for Pr{([ X.) (-z,z)}

z=2.75

RHO Number Independence Bivariate Trivariate Exact for Trivariate
P.., = P.. Equicorrelated P.. = (P.)-1J 1J CaseP P 1J J j

ijjj'ET' Pk= ij,jj'ET'

all kZ

.100 3 0.01777 --- 0.01774 0.01774 0.01775

.100 4 0.02363 --- 0.02361 0.02359 0.02363

.100 5 0.02944 --- 0.02945 ---

.100 6 0.03523 ...... 0.03517 ---

.100 1 0.04098 0.04084 ---

.100 8 0.04669 --- 0.04647 ---

.100 9 0.05237 ...... 0.05205 ---

.100 10 0.05802 --- 0.05759 ---

.100 11 0.06364 --- 0.06309 ---

.10C 12 0.06922 --- 0.06855 ---

.100 13 0.07476 --- 0.07396 ---

.100 14 0.08028 --- 0.07933 ---

.100 15 0.08576 --- 0.08467 ---

.100 16 0.09121 --- 0.08995 ---

.100 17 0.09662 --- 0.09521 ---

.100 18 0.10201 --- 0.10042 ---

.100 19 0.10736 ...... 0.10559 ---

.100 20 0.11268 --- 0.11073 --- r%

.200 3 0.01777 0.01770 0.01762 0.01762 0.01767

.200 4 0.02363 0.02357 0.02340 0.02341 0.02350

.200 5 0.02944 0.02944 0.02919 0.02945 0.02934

.200 6 0.03523 --- 0.03498 0.03455 0.03518

.200 7 0.04098 0.04077 0.04002 ---

.200 8 0.04669 --- 0.04655 0.04541

.200 9 0.05237 --- 0.05234 0.05073 ---

.200 10 0.05802 --- 0.05599 ---

.200 11 0.06364 0.06118

.200 12 0.06922 --- 0.06630

.200 13 0.07476 0.07137 ---

.200 14 0.08028 --- 0.07638 ---

.200 15 0.08576 --- 0.08132

.200 16 0.09121 --- 0.08621 ---

.200 17 0.09662 --- 0.09105 --- %

.200 18 0.10201 --- 0.09583 --- ' tfx

.200 19 0.10736 0.10056

.200 20 0.11268 --- 0.10524 ---

means value is high-r than that given by conservative assumption of

independence.
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Table Id Continued. h

z=2.75

RHO Number Independence Bivariate Trivariate Exact for Trivariate
Plj = P Equicorrelated P 13 = (P.."

'3 Case P EP 1
ij,jj'ET' ki ij,jj'cT'

all k,Z

.300 3 0.01777 0.01755 0.01740 0.01740 0.01751

.300 4 0.02363 0.02334 0.02304 0.02295 0.02326

.300 5 0.02944 0.02913 0.02868 0.02831 0.02901

.300 6 0.03523 0.03493 0.03432 0.03354 0.03477 M

.300 7 0.04098 0.04072 0.03996 0.03867 0.04052

.300 8 0.04669 0.04652 0.04561 0.04368 0.04628

.300 9 0.05237 0.05231 0.05125 0.04860 0.05203

.300 10 0.05802 --- 0.05689 0.05342 0.05778

.300 11 0.06364 --- 0.06253 0.05815 0.06354

.300 12 0.06922 --- 0.06818 0.06279 --- 11 %

.300 13 0.07476 --- 0.07382 0.06735 --

1 300 14 0.08028 0.07946 0.07183

.300 15 0.08576 --- 0.08510 0.07623

.300 16 0.09121 --- 0.09075 0.08056

.300 17 0.09662 --- 0.09639 0.08482 -

.300 18 0.10201 --- 0.08902 ---

.300 19 0.10736 --- 0.09315 --

.300 20 0.11268 --- 0.09721 -

.400 3 0.01777 0.01730 0.01704 0.01704 0.01724

.400 4 0.02363 0.02296 0.02246 0.02227 0.02286

.400 5 0.02944 0.02863 0.02788 0.02726 0.02847

.400 6 0.03523 0.03430 0.03329 0.03208 0.03408

.400 7 0.04098 0.03997 0.03871 0.03675 0.03970

.400 8 0.04669 0.04563 0.04413 0.04127 0.04531

.400 9 0.05237 0.05130 0.04955 0.04567 0.05093

.400 10 0.05802 0.05697 0.05496 0.04993 0.05654

.400 11 0.06364 0.06264 0.06038 0.05409 0.06215

.400 12 0.06922 0.06831 0.06580 0.05813 0.06777

.400 13 0.07476 0.07397 0.07121 0.06208 0.07338

.400 14 0.08028 0.07964 0.07663 0.06594 0.07900

.400 15 0.08576 0.08531 0.08205 0.06971 0.08461

.400 16 0.09121 0.09098 0.08746 0.07340 0.09022

.400 17 0.09662 --- 0.09288 0.07701 0.09584

.400 18 0.10201 --- 0.09830 0.08054 0.10145

.400 19 0.10736 0. 10371 0.08401 0.10707 .-.

.400 20 0.11268 0.10913 0.08740 0.11268

"--" Means value is higher than that given by conservative assumption of

independence.
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Table id Continued.

z=2.75

RHO Number Independence Bivariate Trivariate Exact for Trivariate
P., = P.. Equicorrelated P = (P..)

' Case P p 
ij,jj' T' k ij,jj'cT'

all k,Z

.500 3 0.01777 0.01691 0.01653 0.01653 0.01683

.500 4 0.02363 0.02238 0.02162 0.02131 0.02222

.500 5 0.02944 0.02785 0.02671 0.02583 0.02762 6

.500 6 0.03523 0.03333 0.03180 0.03013 0.03302

.500 7 0.04098 0.03880 0.03690 0.03423 0.03841

.500 8 0.04669 0.04427 0.04199 0.03815 0.04381

.500 9 0.05237 0.04974 0.04708 0.04193 0.04920

.500 10 0.05802 0.05522 0.05218 0.04556 0.05460

.500 11 0.06364 0.06069 0.05727 0.04907 0.05999 S

.500 12 0.06922 0.06616 0.06236 0.05246 0.06539

.500 13 0.07476 0.07164 0.06745 0.05575 0.07079

.500 14 0.08028 0.07711 0.07255 0.05893 0.07618

.500 15 0.08576 0.08258 0.07764 0.06203 0.08158

.500 16 0.09121 0.08806 0.08273 0.06504 0.08697

.500 17 0.09662 0.09353 0.08783 0.06798 0.09237 p.

.500 18 0.10201 0.09900 0.09292 0.07084 0.09777

.500 19 0.10736 0.10448 0.09801 0.07363 0.10316

.500 20 0.11268 0.10995 0.10310 0.07635 0.10856

.600 3 0.01777 0.01632 0.01579 0.01579 0.01621

.600 4 0.02363 0.02150 0.02043 0.02003 0.02127

.600 5 0.02944 0.02669 0.02508 0.02395 0.02634

.600 6 0.03523 0.03187 0.02972 0.02761 0.03140

.600 7 0.04098 0.03705 0.03437 0.03106 0.03647 %

.600 8 0.04669 0.04223 0.03901 0.03431 0.04153

.600 9 0.05237 0.04741 0.04366 0.03740 0.04660

.600 10 0.05802 0.05259 0.04830 0.04035 0.05166

.600 ii 0.06364 0.05778 0.05295 0.04317 0.05673

.600 12 0.06922 0.06296 0.05759 0.04587 0.06179

.600 13 0.07476 0.06814 0.06224 0.04848 0.06686

.600 14 0.08028 0.07332 0.06688 0.05098 0.07193

.600 15 0.08576 0.07850 0.07153 0.05341 0.07699

.600 16 0.09121 0.08368 0.07617 0.05575 0.08206

.600 17 0.09662 0.08887 0.08082 0.05802 0.08712

.600 18 0.10201 0.09405 0.08546 0.06022 0.09219

.600 19 0.10736 0.09923 0.09011 0.06236 0.09725

.600 20 0.11268 0.10441 0.09475 0.06444 0.10232
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Table Id Continued. vS

z=2.75

RHO Number Independence Bivariate Trivariate Exact for Trivariate
P ij Pij Equicorrelated P = (P.

~~ Case P P
ijjj' eT' kZ - ij,jj'ET'

all k,Z

.700 3 0.01777 0.01546 0.01476 0.01476 0.01529

.700 4 0.02363 0.02021 0.01880 0.01832 0.01987

.700 5 0.02944 0.02496 0.02285 0.02154 0.02444

.700 6 0.03523 0.02971 0.02690 0.02447 0.02902

.700 7 0.04098 0.03446 0.03094 0.02718 0.03360

.700 8 0.04669 0.03921 0.03499 0.02971 0.03818

.700 9 0.05237 0.04396 0.03904 0.03208 0.04275

.700 10 0.05802 0.04872 0.04308 0.03431 0.04733

.700 11 0.06364 0.05347 0.04713 0.03643 0.05191

.700 12 0.06922 0.05822 0.05118 0.03845 0.05649

.700 13 0.07476 0.06297 0.05522 0.04036 0.06106

.700 14 0.08028 0.06772 0.05927 0.04221 0.06564

.700 15 0.08576 0.07247 0.06332 0.04397 0.07022

.700 16 0.09121 0.07722 0.06736 0.04567 0.07480

.700 17 0.09662 0.08197 0.07141 0.04730 0.07937

.700 18 0.10201 0.08672 0.07546 0.04888 0.08395

.700 19 0.10736 0.09145 0.07950 0.05041 0.08853

.700 20 0.11268 0.09622 0.08355 0.05189 0.09311

.800 3 0.01777 0.01417 0.01332 0.01332 0.01392

.800 4 0.02363 0.01828 0.01657 0.01606 0.01778

.800 5 0.02944 0.02238 0.01983 0.01844 0.02164

.800 6 0.03523 0.02649 0.02309 0.02057 0.02550

.800 7 0.04098 0.03059 0.02634 0.02249 0.02935
800 8 0.04669 0.03470 0.02960 0.02426 0.03321
.800 9 0.05237 0.03880 0.03285 0.02588 0.03707
.800 10 0.05802 0.04291 0.03611 0.02740 0.04093
.800 11 0.06364 0.04701 0.03936 0.02882 0.04478
.800 12 0.06922 0.05112 0.04262 0.03076 0.04864
.800 13 0.07476 0.05522 0.04587 0.03143 0.05250
.800 14 0.08028 0.05933 0.04913 0.03263 0.05636
.800 15 0.08576 0.06343 0.05238 0.03378 0.06022
.800 16 0.09121 0.06754 0.05564 0.03487 0.06407
.800 17 0.09662 0.07164 0.05889 0.03592 0.06793
.800 18 0.10201 0.07575 0.06215 0.03692 0.07179
.800 19 0.10736 0.07986 0.06540 0.03789 0.07565
.800 20 0.11268 0.08396 0.06866 0.03882 0.07950
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Table ld Continued.

z-2.75

RHO Number Independence Bivariate Trivariate Exact for Trivariate 2
P iJ Pij Equicorrelated Pij = (Pij

ij,jj'cT' Case P P
kQ. -c k ij,jj'e-T'

all k,Z

.900 3 0.01777 0.01210 0.01121 0.01121 0.01183

.900 4 0.02363 0.01517 0.01339 0.01293 0.01452

.900 5 0.02944 0.01824 0.01557 0.01436 0.01732

.900 6 0.03523 0.02131 0.01775 0.01559 0.02005

.900 7 0.04098 0.02438 0.01993 0.01667 0.02284

.900 8 0.04669 0.02745 0.02211 0.01764 0.02556

.900 9 0.05237 0.03052 0.02429 0.01852 0.02835

.900 10 0.05802 0.03359 0.02648 0.01933 0.03104

.900 11 0.06364 0.03666 0.02866 0.02007 0.03383

.900 12 0.06922 0.03973 0.03084 0.02076 0.03652

.900 13 0.07476 0.04281 0.03302 0.02141 0.03932

.900 14 0.08028 0.04588 0.03520 0.02202 0.04206

.900 15 0.08576 0.04895 0.03738 0.02259 0.04474

.900 16 0.09121 0.05202 0.03956 0.02314 0.04755

.900 17 0.09662 0.05509 0.04174 0.02365 0.05024 4

.900 18 0.10201 0.05816 0.04392 0.02414 0.05302

.900 19 0.10736 0.06123 0.04610 0.02462 0.05571

.900 20 0.11268 0.06430 0.04828 0.02507 0.05850

.990 3 0.01777 0.00800 0.00756 0.00756 *

.990 4 0.02363 0.00902 0.00814 0.00796 *

.990 5 0.02944 0.01004 0.00872 0.00827 *

.990 6 0.03523 0.01106 0.00930 0.00852 *

.990 7 0.04098 0.01208 0.00987 0.00872 *

.990 8 0.04669 0.01310 0.01045 0.00890

.990 9 0.05237 0.01412 0.01103 0.00906 *

.990 10 0.05802 0.01514 0.01161 0.00920 *a

.990 11 0.06364 0.01616 0.01219 0.00932 *

.990 12 0.06922 0.01718 0.01277 0.00943 *

.990 13 0.07476 0.01821 0.01335 0.00954

.990 14 0.08028 0.01923 0.01393 0.00964 *

.990 15 0.08576 0.02025 0.01450 0.00973 *

.990 16 0.09121 0.02127 0.01508 0.00981 *

.990 17 0.09662 0.02229 0.01566 0.00989 *

.990 18 0.10201 0.02331 0.01624 0.00996 * *

.990 i9 0.10736 0.02433 0.01682 0.01003 *

.990 20 0.11268 0.02535 0.01740 0.01010 *

means results were unobtainable due to inability to integrate accurately.
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Table 2A n

Bivariate Method Upper bound for z so that Pr{iuiX i  (-zoizo .05

where X ' N(0,Z) and there is a tree T connecting the Xi, i=l,...,n

such that IPx .x I = P for all e cT.
13 1

n Independence P=.1 P=.2 P=.3 P=.4 P=.5 P=.6

4 2.494 2.493 2.491 2.486 2.478 2.467 2.449

5 2.572 2.572 2.570 2.565 2.558 2.546 2.529

6 2.635 2.635 2.633 2.628 2.621 2.610 2.593

7 2.686 --- 2.685 2.681 2.674 2.663 2.646

8 2.731 --- 2.730 2.726 2.719 2.709 2.692

9 2.769 --- 2.769 2.765 2.759 2.748 2.732

10 2.803 --- 2.803 2.800 2.793 2.783 2.767

11 2.834 --- 2.834 2.831 2.825 2.815 2.799

12 2.862 --- 2.862 2.859 2.853 2.843 2.828

13 2.887 --- 2.887 2.884 2.876 2.869 2.854

14 2.910 --- 2.908 2.902 2.893 2.878

15 2.932 --- 2.929 2.924 2.915 2.900

16 2.952 --- 2.950 2.944 2.936 2.921

17 2.970 --- 2.968 2.963 2.955 2.940

18 2.988 --- 2.986 2.981 2.973 2.958

19 3.004 . .. 3.003 2.998 2.990 2.976

20 3.020 --- 3.018 3.014 3.005 2.992

means value is higher than that given by conservative assumption -.

of independence.
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Table 2A Continued.

P=.7 P=.8 P=.9 P=.95 P=.99

4 2.423 2.381 2.306 2.239 2.105

5 2.502 2.458 2.376 2.296 2.145

6 2.566 2.521 2.436 2.349 2.181

7 2.619 2.574 2.487 2.397 2.215 S

8 2.665 2.620 2.531 2.439 2.246

9 2.705 2.660 2.571 2.248 2.274

10 2.741 2.696 2.606 2.510 2.301

11 2.773 2.728 2.638 2.541 2.327

12 2.802 2.758 2.668 2.560 2.350

13 2.824 2.785 2.695 2.596 2.372

14 2.853 2.804 2.719 2.620 2.393

15 2.876 2.832 2.742 2.643 2.413

16 2.897 2.853 2.764 2.664 2.432

17 2.916 2.873 2.784 2.684 2.450

18 2.935 2.892 2.803 2.703 2.467

19 2.952 2.910 2.821 2.721 2.483

20 2.968 2.926 2.838 2.738 2.499
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Table 2B

n
Bivariate Method Upper Bound for z0 so that Pr{ 1 X1  (-z0aiZoai)} .10

where X N(O,E) and there is a tree T connecting the Xi , i=l,...,n

such that Px x. I = P for all eijcT.

n Independence P=. P=.2 P=.3 P=.4 P=.5 P=.6

4 2.234 2.233 2.229 2.222 2.211 2.196 2.174

5 2.319 2.319 2.315 2.309 2.298 2.283 2.261

6 2.386 --- 2.384 2.378 2.368 2.353 2.331

7 2.442 --- 2.441 2.435 2.426 2.411 2.390

8 2.490 --- 2.490 2.484 2.475 2.461 2.440

9 2.531 --- 2.526 2.517 2.504 2.483

10 2.568 ... ... 2.564 2.555 2.542 2.522

11 2.601 --- 2.597 2.589 2.576 2.556

12 2.630 --- 2.627 2.619 2.607 2.587

13 2.657 --- 2.655 2.647 2.635 2.616 i

14 2.682 2.680 2.673 2.b61 2.642

15 2.705 --- 2.704 2.696 2.685 2.666

16 2.726 2.725 2.718 2.707 2.688

17 2.746 --- 2.746 2.739 2.727 2.709

18 2.765 --- 2.765 2.758 2.747 2.729

19 2.783 .. . 2.783 2.776 2.765 2.747

20 2.799 --- 2.799 2.793 2.782 2.765

means value is higher than that give by conservative assumption of
independence.
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Table 2B Continued.

P=.7 P=.8 P=.9 P=.95 P=.99

4 2.142 2.093 2.008 1.930 1.793

5 2.228 2.177 2.085 1.997 1.835

6 2.298 2.246 2.150 2.055 1.873

7 2.357 2.304 2.206 2.106 1.908

8 2.407 2.355 2.254 2.151 1.041

9 2.451 2.399 2.298 2.192 1.972

10 2.490 2.438 2.336 2.229 2.001

11 2.525 2.473 2.371 2.263 2.028

12 2.557 2.505 2.403 2.294 2.054

13 2.585 2.534 2.433 2.323 2.078

14 2.612 2.561 2.460 2.350 2.100

15 2.636 2.586 2.485 2.375 2.122

16 2.659 2.609 2.508 2.398 2.143

17 2.680 2.631 2.530 2.420 2.162

18 2.700 2.651 2.551 2.440 2.181

19 2.719 2.670 2.570 2.460 2.200

20 2.737 2.688 2.589 2.478 2.216
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Table 2C

n

Bivariate Method Upper Bound for z0  so that Pr{it 1 X 0(-zoCi'z < .20

where X % N(OZ) and there is a tree T connecting the X., i=l,...,n

such that IP I =- P for all e. cT.
1J

n Independence P=.1 P=.2 P=.3 P=.4 P=.5 P=.6

4 1.943 1.941 1.935 1.926 1.911 1.891 1.863

5 2.036 --- 2.033 2.023 2.009 1.989 1.960

6 2.111 2.109 2.100 2.087 2.067 2.039

7 2.172 . .. 2.164 2.151 2.132 2.104

8 2.224 --- 2.218 2.205 2.187 2.160

9 2.269 --- 2.265 2.253 2.235 2.204

10 2.309 --- 2.306 2.294 2.277 2.251

11 2.344 --- 2.343 2.332 2.315 2.289

12 2.376 --- 2.376 2.365 2.348 2.324

13 2.406 --- 2.406 2.395 2.379 2.355

14 2.432 ... ... ...- 2.423 2.408 2.384

15 2.457 --- .. ... 2.449 2.434 2.410

16 2.480 ... ... ...- 2.473 2.458 2.435

17 2.502 ... ... ...- 2.495 2.480 2.458

18 2.522 --- 2.516 2.501 2.479

19 2.541 2.536 2.521 2.499

20 2.559 ... ... ...- 2.554 2.540 2.518

"---" Means value is higher than that given by conservative assumption 
of

independence.

'I.

74



Table 2C Continued.

P=.7 P=.8 P=.9 P=.95 P=.99

4 1.823 1.765 1.668 1.581 1.433

5 1.920 1.859 1.753 1.654 1.477

6 1,999 1.936 1.825 1.718 1.518

7 2.064 2.001 1.887 1.774 1.556

8 2.120 2.058 1.941 1.825 1.592

9 2.169 2.107 1.990 1.870 1.626

10 2.213 2.150 2.033 1.912 1.657

11 2.251 2.190 2.072 1.949 1.687

12 2.286 2.225 2.108 1.984 1.715

13 2.318 2.258 2.140 2.016 1.741

14 2.347 2.287 2.171 2.046 1.767

15 2.374 2.315 2.199 2.074 1.791

16 2.399 2.340 2.225 2.100 1.813 i

17 2.423 2.364 2.249 2.124 1.835

18 2.444 2.387 2.272 2.147 1.856

19 2.465 2.408 2.293 2.169 1.876

20 2.484 2.427 2.314 2.189 1.895
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Table 3

Selected Trivariate and Bivariate Upper Bounds for z0 so that

n
Pr{ u X. (-z O.,z z.)} < .10 where X . N(O,Z) and there is a tree T

i=l i 0 0 u -

connecting the Xi: i=l,...,n such that IP .H P for all e.,cT.

n=5 0

P.. Independence Bivariate Trivariate (P- ,P.) Trivariate (P ij,(P. .)

e ij I ,ET' e ij ,jj , T'

.6 2.32 2.26 2.23 2.25

.7 2.32 2.23 2.17 2.22

.8 2.32 2.18 2.11 2.17

.9 2.32 2.09 2.02 2.07

n=10

P.. Independence Bivariate Trivariate (P. V=Pi ) Trivariate (Pi. =(P. ) 2)
13J 2 .J 'j 1J

.6 2.57 2.52 2.49 2.50

.7 2.57 2.49 2.43 2.48

.8 2.57 2.44 2.35 2.42

.9 2.57 2.33 2.24 2.30

n=20

P.. Independence Bivariate Trivariate (P ij=Pij) Trivariate (P..,=(P )2)
1] 3 1J J 1J O

eij ,jj ,,T' ei E T'
.6 2.80 2.77 2.76 2.77

.7 2.80 2.74 2.73 2.74

.8 2.80 2.69 2.62 2.68

.9 2.80 2.59 2.49 2.58
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superior and more complicated procedure (trivariate method) uses probabilities

of pairwise and three way intersections of events. These new methods are applied

to multivariate normal hypothesis testing and simultaneous unbiased confidence

intervals and are fhown to give results superior to those of the currently used

procedure (conservative assumption of independence of events) if the number of

variables is not too large and the data is highly correlated. Modifications of

these new methods to non-normal probabilities and different types of probability

regions are also mentioned. " ./ ,. . -
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